Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 12-22.doi: 10.11707/j.1001-7488.LYKX20240252
• Research papers • Previous Articles Next Articles
Xu Wang1,2,*(),Hao Guo1,2,3, Baoyinmanda1,2,Guangyi Zhou1,2,Yuehua Chen4,Dangren Li4
Received:
2024-05-06
Online:
2025-05-20
Published:
2025-05-24
Contact:
Xu Wang
E-mail:cafwangxu111@caf.ac.cn
CLC Number:
Xu Wang,Hao Guo, Baoyinmanda,Guangyi Zhou,Yuehua Chen,Dangren Li. Damaged Characteristics and Influencing Factors of Cunninghamia lanceolata Mixed Plantations in Subtropics under Extreme Drought Conditions[J]. Scientia Silvae Sinicae, 2025, 61(5): 12-22.
Table 1
Basic characteristics of the sampling plots"
编号 Plot No. | 森林混交类型Forest mixed type | 坡向 Aspect of slope (°) | 坡位 Slope position | 坡度 Slope (°) | 海拔 Altitude/m | 林分密度 Density/(tree·hm?2) |
XS01 | 杉木-闽楠C. lanceolata + P. bournei | S190 | 中Mesoslope | 12 | 610 | 1 600 |
XS01 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中 Mesoslope | 12 | 613.2 | 1 800 |
XS01 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中 Mesoslope | 12 | 615.4 | 1 700 |
XS02 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中上 Mid-uphill | 26 | 633.5 | 2 475 |
XS02 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中上 Mid-uphill | 30 | 647.5 | 2 475 |
XS02 | 杉木-闽楠 C. lanceolata + P. bournei | S190 | 中上 Mid-uphill | 30.5 | 643.5 | 3 125 |
XS03 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 中下 Mid-downhill | 25 | 473.2 | 1 350 |
XS03 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 中下 Mid-downhill | 25 | 468.7 | 1 250 |
XS03 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 中下 Mid-downhill | 25 | 467.4 | 1 125 |
XS04 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 下 Downslope | 11 | 442.9 | 1 750 |
XS04 | 杉木-闽楠-南方红豆杉 C. lanceolata + P. bournei + T. wallichiana | S190 | 下 Downslope | 12 | 437.1 | 1 725 |
XS04 | 杉木-闽楠-枫香 C. lanceolata + P. bournei + L. formosana | S190 | 下 Downslope | 12 | 443.7 | 1 300 |
Table 2
Composition of drought-damaged wood species"
种名Species | 株数 Number | 正常 Normal type | 占比 Proportion (%) | 轻度受损 Mild damaged | 占比 Proportion (%) | 中度受损 Moderate damaged | 占比 Proportion (%) | 严重受损 Severely damaged | 占比 Proportion (%) |
八角枫Alangium chinense | 6 | 6 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
杜鹃Rhododendron simsii | 3 | 3 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
枫香Liquidambar formosana | 62 | 56 | 90.32 | 0 | 0.00 | 1 | 1.61 | 5 | 8.06 |
光叶山矾Symplocos lancifolia | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
栎Quercus acutissima | 3 | 3 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
马尾松Pinus massoniana | 5 | 5 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
毛八角枫Alangium kurzii | 5 | 5 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
闽楠Phoebe bournei | 530 | 298 | 56.23 | 131 | 24.72 | 19 | 3.58 | 82 | 15.47 |
南方红豆杉Taxus wallichiana | 59 | 55 | 93.22 | 1 | 1.69 | 0 | 0.00 | 3 | 5.08 |
青榨槭Acer davidii | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
日本柳杉Cryptomeria japonica | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
山苍子Litsea cubeba | 2 | 2 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
杉木Cunninghamia lanceolata | 172 | 162 | 94.19 | 2 | 1.16 | 1 | 0.58 | 7 | 4.07 |
香椿Toona sinensis | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
野漆Toxicodendron succedaneum | 13 | 12 | 92.31 | 0 | 0.00 | 0 | 0.00 | 1 | 7.69 |
樱Prunus serrulata | 2 | 2 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
千年桐Vernicia montana | 1 | 1 | 100.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
总计 Total | 867 | 614 | 70.82 | 134 | 15.46 | 21 | 2.42 | 98 | 11.30 |
Fig.5
Correlation between tree damage and environmental factors DR: Tree damage rate; DR: Mortality rate; SA: soil aggregate structure; DS: Stand density; EL: elevation/slope position; SL: slope; TS20, TS40, TS60, TS80: total porosity of 20 cm, 40 cm, 60 cm and 80 cm soil layers, respectively; VW20, VW40, Vweight60 and Vweight80: the bulk density of 20 cm, 40 cm, 60 cm and 80 cm soil layers, respectively; MC20, MC40, MC60, MC80: the maximum water holding capacity of 20 cm, 40 cm, 60 cm and 80 cm soil layer, respectively; CS20, CS40, CS60, CS80: capillary water capacity of 20 cm, 40 cm, 60 cm and 80 cm soil layers, respectively; MM20, MM40, MM60, and MM80: The minimum water holding capacity of 20 cm, 40 cm, 60 cm, and 80 cm soil layers, respectively."
陈龙池, 汪思龙, 陈楚莹. 杉木人工林衰退机理探讨. 应用生态学报, 2004, 15 (10): 1953- 1957.
doi: 10.3321/j.issn:1001-9332.2004.10.050 |
|
Chen L C, Wang S L, Chen C Y. Degradation mechanism of Chinese fir plantation. Chinese Journal of Applied Ecology, 2004, 15 (10): 1953- 1957.
doi: 10.3321/j.issn:1001-9332.2004.10.050 |
|
洪洁莉, 陈丽娟, 王悦颖, 等. 2022年秋季我国气候异常特征及成因分析. 气象, 2023, 49 (4): 495- 505.
doi: 10.7519/j.issn.1000-0526.2023.032701 |
|
Hong J L, Chen L J, Wang Y Y, et al. Features and possible causes of abnormal climate over Chine in autumn 2022. Meteorological Monthly, 2023, 49 (4): 495- 505.
doi: 10.7519/j.issn.1000-0526.2023.032701 |
|
刘 南, 曲鲁平, 汤行昊, 等. 水分条件和热浪频次对木荷苗木光合特性与生长速率的影响. 林业科学, 2023, 59 (3): 104- 114.
doi: 10.11707/j.1001-7488.LYKX20210944 |
|
Liu N, Qu L P, Tang X H, et al. Effects of water conditions and heat wave frequency on the photosynthetic characteristics and growth rate of Schima superba seedlings. Scientia Silvae Sinicae, 2023, 59 (3): 104- 114.
doi: 10.11707/j.1001-7488.LYKX20210944 |
|
罗云建, 张小全. 多代连栽人工林碳贮量的变化. 林业科学研究, 2006, 19 (6): 791- 798.
doi: 10.3321/j.issn:1001-1498.2006.06.020 |
|
Luo Y J, Zhang X Q. Carbon stock changes of successive rotations of plantation. Forest Research, 2006, 19 (6): 791- 798.
doi: 10.3321/j.issn:1001-1498.2006.06.020 |
|
孝惠爽, 赵 杰, 傅声雷. 华南典型尾叶桉纯林经营对土壤理化性质, 微生物和线虫群落的影响. 生态学报, 2023, 43 (19): 7963- 7973. | |
Xiao H S, Zhao J, Fu S L. Effects of Eucalyptus plantations and management on soil physico-chemical properties, microbial and nematode communities in South China. Acta Ecologica Sinica, 2023, 43 (19): 7963- 7973. | |
Allen C D, Breshears D D, McDowell N G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 2015, 6 (8): 1- 55. | |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001 |
|
Assi A T, Blake J, Mohtar R H, et al. Soil aggregates structure-based approach for quantifying the field capacity, permanent wilting point and available water capacity. Irrigation Science, 2019, 37 (4): 511- 522.
doi: 10.1007/s00271-019-00630-w |
|
Bennett A C, McDowell N G, Allen C D, et al. Larger trees suffer most during drought in forests worldwide. Nature Plants, 2015, 1 (10): 1- 5. | |
Bodner G, Nakhforoosh A, Kaul H P. Management of crop water under drought: a review. Agronomy for Sustainable Development, 2015, 35 (2): 401- 442.
doi: 10.1007/s13593-015-0283-4 |
|
Britton T G, Brodribb T J, Richards S A, et al. Canopy damage during a natural drought depends on species identity, physiology and stand composition. New Phytologist, 2022, 233 (5): 2058- 2070.
doi: 10.1111/nph.17888 |
|
Brodribb T J, Powers J, Cochard H, et al. Hanging by a thread? forests and drought. Science, 2020, 368 (6488): 261- 266.
doi: 10.1126/science.aat7631 |
|
Brzostek E R, Dragoni D, Schmid H P, et al. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Global Change Biology, 2014, 20 (8): 2531- 2539.
doi: 10.1111/gcb.12528 |
|
Chou C, Chiang J C H, Lan C W, et al. Increase in the range between wet and dry season precipitation. Nature Geoscience, 2013, 6 (4): 263- 267.
doi: 10.1038/ngeo1744 |
|
Chou C, Lan C W. Changes in the annual range of precipitation under global warming. Journal of Climate, 2012, 25 (1): 222- 235.
doi: 10.1175/JCLI-D-11-00097.1 |
|
Clark J S, Iverson L, Woodall C W, et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22 (7): 2329- 2352.
doi: 10.1111/gcb.13160 |
|
Dai A. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2 (1): 45- 65.
doi: 10.1002/wcc.81 |
|
Das A J, Stephenson N L, Flint A, et al. Climatic correlates of tree mortality in water-and energy-limited forests. PLoS ONE, 2013, 8 (7): e69917.
doi: 10.1371/journal.pone.0069917 |
|
Dietze M C, Moorcroft P R. Tree mortality in the eastern and central United States: patterns and drivers. Global Change Biology, 2011, 17 (11): 3312- 3326.
doi: 10.1111/j.1365-2486.2011.02477.x |
|
Engelbrecht B M J, Comita L S, Condit R, et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 2007, 447 (7140): 80- 82.
doi: 10.1038/nature05747 |
|
Fauset S, Baker T R, Lewis S L, et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 2012, 15 (10): 1120- 1129.
doi: 10.1111/j.1461-0248.2012.01834.x |
|
Feeley K J, Davies S J, Perez R, et al. Directional changes in the species composition of a tropical forest. Ecology, 2011, 92 (4): 871- 882.
doi: 10.1890/10-0724.1 |
|
Felsmann K, Baudis M, Kayler Z E, et al. Responses of the structure and function of the understory plant communities to precipitation reduction across forest ecosystems in Germany. Annals of Forest Science, 2018, 75 (1): 3.
doi: 10.1007/s13595-017-0681-7 |
|
Fensham R J, Fairfax R J. Drought-related tree death of savanna eucalypts: species susceptibility, soil conditions and root architecture. Journal of Vegetation Science, 2007, 18 (1): 71- 80.
doi: 10.1111/j.1654-1103.2007.tb02517.x |
|
Geroy I J, Gribb M M, Marshall H P, et al. Aspect influences on soil water retention and storage. Hydrological Processes, 2011, 25 (25): 3836- 3842.
doi: 10.1002/hyp.8281 |
|
Gobin R, Korboulewsky N, Dumas Y, et al. Transpiration of four common understorey plant species according to drought intensity in temperate forests. Annals of Forest Science, 2015, 72 (8): 1053- 1064.
doi: 10.1007/s13595-015-0510-9 |
|
Grossiord C, Granier A, Ratcliffe S, et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (41): 14812- 14815. | |
Lopez J G, Tor-Ngern P, Oren R, et al. How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought. Global Change Biology, 2021, 27 (13): 3066- 3078.
doi: 10.1111/gcb.15601 |
|
Hawthorne S, Miniat C F. Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology, 2018, 11 (1): e1825.
doi: 10.1002/eco.1825 |
|
Hoover D L, Pfennigwerth A A, Duniway M C. Drought resistance and resilience: the role of soil moisture–plant interactions and legacies in a dryland ecosystem. Journal of Ecology, 2021, 109 (9): 3280- 3294.
doi: 10.1111/1365-2745.13681 |
|
Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526 (7574): 574- 577.
doi: 10.1038/nature15374 |
|
Jeong D I, Sushama L, Khaliq M N. The role of temperature in drought projections over North America. Climatic Change, 2014, 127 (2): 289- 303.
doi: 10.1007/s10584-014-1248-3 |
|
Jung E Y, Gaviria J, Sun S, et al. Comparative drought resistance of temperate grassland species: testing performance trade-offs and the relation to distribution. Oecologia, 2020, 192 (4): 1023- 1036.
doi: 10.1007/s00442-020-04625-9 |
|
Kang J, Shen H H, Zhang S Y, et al. Contrasting growth responses to drought in three tree species widely distributed in northern China. Science of the Total Environment, 2024, 908, 168331.
doi: 10.1016/j.scitotenv.2023.168331 |
|
Koepke D F, Kolb T E, Adams H D. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone. Oecologia, 2010, 163 (4): 1079- 1090.
doi: 10.1007/s00442-010-1671-8 |
|
Lines E R, Coomes D A, Purves D W. Influences of forest structure, climate and species composition on tree mortality across the eastern US. PLoS ONE, 2010, 5 (10): e13212.
doi: 10.1371/journal.pone.0013212 |
|
Liu D, Wang T, Peñuelas J, et al. Drought resistance enhanced by tree species diversity in global forests. Nature Geoscience, 2022, 15 (10): 800- 804.
doi: 10.1038/s41561-022-01026-w |
|
Liu Z B, Zhu J Y, Xia J Y, et al. Declining resistance of vegetation productivity to droughts across global biomes. Agricultural and Forest Meteorology, 2023, 340, 109602.
doi: 10.1016/j.agrformet.2023.109602 |
|
Lv Y, He H L, Ren X L, et al. High resistance of deciduous forests and high recovery rate of evergreen forests under moderate droughts in China. Ecological Indicators, 2022, 144, 109469.
doi: 10.1016/j.ecolind.2022.109469 |
|
McDowell N G, Allen C D, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368 (6494): eaaz9463.
doi: 10.1126/science.aaz9463 |
|
McDowell N G, Allen C D. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 2015, 5 (7): 669- 672.
doi: 10.1038/nclimate2641 |
|
Millar C I, Stephenson N L. Temperate forest health in an era of emerging megadisturbance. Science, 2015, 349 (6250): 823- 826.
doi: 10.1126/science.aaa9933 |
|
Miyamoto K, Aiba S, Aoyagi R, et al. Effects of El Niño drought on tree mortality and growth across forest types at different elevations in Borneo. Forest Ecology and Management, 2021, 490, 119096.
doi: 10.1016/j.foreco.2021.119096 |
|
Olson M E, Anfodillo T, Gleason S M, et al. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. New Phytologist, 2021, 229 (4): 1877- 1893.
doi: 10.1111/nph.16961 |
|
Olson M E, Soriano D, Rosell J A, et al. Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (29): 7551- 7556. | |
Plourde A, Krause C, Lord D. Spatial distribution, architecture, and development of the root system of Pinus banksiana Lamb. in natural and planted stands. Forest Ecology and Management, 2009, 258 (9): 2143- 2152.
doi: 10.1016/j.foreco.2009.08.016 |
|
Rehschuh R, Mette T, Menzel A, et al. Soil properties affect the drought susceptibility of Norway spruce. Dendrochronologia, 2017, 45, 81- 89.
doi: 10.1016/j.dendro.2017.07.003 |
|
Robert J A, Lindgren B S. Relationships between root form and growth, stability, and mortality in planted versus naturally regenerated lodgepole pine in north-central British Columbia. Canadian Journal of Forest Research, 2006, 36 (10): 2642- 2653.
doi: 10.1139/x06-146 |
|
Ruiz-Benito P, Lines E R, Gómez-Aparicio L, et al. Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition. PLoS ONE, 2013, 8 (2): e56843.
doi: 10.1371/journal.pone.0056843 |
|
Schnabel F, Barry K E, Eckhardt S, et al. Neighbourhood species richness and drought-tolerance traits modulate tree growth and δ13C responses to drought. Plant Biology, 2024, 26 (2): 330- 345.
doi: 10.1111/plb.13611 |
|
Schwartz N B, Budsock A M, Uriarte M. Fragmentation, forest structure, and topography modulate impacts of drought in a tropical forest landscape. Ecology, 2019, 100 (6): e02677.
doi: 10.1002/ecy.2677 |
|
Sohn J A, Saha S, Bauhus J. Potential of forest thinning to mitigate drought stress: a meta-analysis. Forest Ecology and Management, 2016, 380, 261- 273.
doi: 10.1016/j.foreco.2016.07.046 |
|
Stampfli A, Bloor J M G, Fischer M, et al. High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Global Change Biology, 2018, 24 (5): 2021- 2034.
doi: 10.1111/gcb.14046 |
|
Trenberth K E, Dai A, Van Der Schrier G, et al. Global warming and changes in drought. Nature Climate Change, 2014, 4 (1): 17- 22.
doi: 10.1038/nclimate2067 |
|
Trugman A T, Anderegg L D L, Anderegg W R L, et al. 2021. Why is tree drought mortality so hard to predict? Trends in Ecology & Evolution, 36(6): 520-532. | |
Trugman A T, Anderegg L D L, Shaw J D, et al. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (15): 8532- 8538. | |
Trugman A T, Detto M, Bartlett M K, et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecology Letters, 2018, 21 (10): 1552- 1560.
doi: 10.1111/ele.13136 |
|
van der Molen M K, Dolman A J, Ciais P, et al. Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 2011, 151 (7): 765- 773.
doi: 10.1016/j.agrformet.2011.01.018 |
|
van Mantgem P J, Caprio A C, Stephenson N L, et al. 2016. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA? Fire Ecology, 12(1): 13-25. | |
von Rein I, Gessler A, Premke K, et al. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Global Change Biology, 2016, 22 (8): 2861- 2874.
doi: 10.1111/gcb.13270 |
|
Vose J M, Miniat C F, Luce C H, et al. Ecohydrological implications of drought for forests in the United States. Forest Ecology and Management, 2016, 380, 335- 345.
doi: 10.1016/j.foreco.2016.03.025 |
|
Walter J, Nagy L, Hein R, et al. Do plants remember drought? hints towards a drought-memory in grasses. Environmental and Experimental Botany, 2011, 71 (1): 34- 40.
doi: 10.1016/j.envexpbot.2010.10.020 |
|
Wolfe B T, Sperry J S, Kursar T A. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. New Phytologist, 2016, 212 (4): 1007- 1018.
doi: 10.1111/nph.14087 |
|
Wright A J, Mommer L, Barry K, et al. Stress gradients and biodiversity: monoculture vulnerability drives stronger biodiversity effects during drought years. Ecology, 2021, 102 (1): e03193.
doi: 10.1002/ecy.3193 |
|
Xu X, Polley H W, Hofmockel K, et al. Species composition but not diversity explains recovery from the 2011 drought in Texas grasslands. Ecosphere, 2017, 8 (3): e01704.
doi: 10.1002/ecs2.1704 |
|
Yang Y, Saatchi S S, Xu L, et al. Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9 (1): 3172.
doi: 10.1038/s41467-018-05668-6 |
|
Young D J N, Stevens J T, Earles J M, et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 2017, 20 (1): 78- 86.
doi: 10.1111/ele.12711 |
|
Zhang J, Huang S M, He F L. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (13): 4009- 4014. | |
Zhao Y, Li J X, Jin Y T, et al. Divergent growth and responses of conifer and broad-leaved trees to warming-drying climate in a semi-arid region, northern China. European Journal of Forest Research, 2024, 143 (3): 887- 901.
doi: 10.1007/s10342-024-01668-y |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||