Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 1-11.doi: 10.11707/j.1001-7488.LYKX20240590
• Invited reviews • Previous Articles Next Articles
Jiaxing Chen1,2,Zongying Fu1,Yongyue Zhang1,3,Ximing Wang2,Yun Lu1,*()
Received:
2024-10-09
Online:
2025-05-20
Published:
2025-05-24
Contact:
Yun Lu
E-mail:y.lu@caf.ac.cn
CLC Number:
Jiaxing Chen,Zongying Fu,Yongyue Zhang,Ximing Wang,Yun Lu. Progress in the Research of Wood-Based Hydrogels Based on the Interaction between Wood and Water[J]. Scientia Silvae Sinicae, 2025, 61(5): 1-11.
Fig.2
Schematic diagram of the interaction between hydrogel aggregates a, b, c are water molecules screenshot of the final configuration of the system with moisture content of 10%, 30% and 90%, respectively, the spherules in a,b are water molecules and the spherules in c are hydrogel molecules."
Table 1
Properties and functional application of wood-based hydrogels"
聚合物 Polymer | 化学结构 Chemical construction | 交联方式 Crosslinking | 机械性能 Mechanical properties | 应用领域 Application |
聚乙烯醇 Polyvinyl alcohol[(C2H4O)n] | ![]() | 氢键 Hydrogen bond ( | 拉伸强度:36.5 MPa ,纵向应变:高达 ~ 438% Tensile strength: 36.5 MPa, longitudinal strain: as high as ~438% ( | 医学领域、柔性电子器件 In the medical field, ( flexible electronic devices ( |
聚丙烯酰胺 Polyacrylamide [(C3H5NO)n] | ![]() | 氢键 、酰胺键Hydrogen bond ( | 应变:高达 0~50%, 纵向拉伸强度:达36 MPa Strain: as high as 0–50%, ( longitudinal tensile strength: reaching 36 MPa ( | 软离子电子领域 Soft iontronics ( |
聚丙烯酸 Polyacrylic acid (C3H4O2) | ![]() | 氢键、离子配位键(Al3+) Hydrogen bond, ionic coordination bond ( | 切向抗压强度:高达 1.73 MPa, 最大断裂应变: 69.4% Tangential compressive strength: as high as 1.73 MPa ( ( | 人机界面 Human-machine interface ( |
聚(N-异丙基丙烯酰胺) Poly(N-isopropylacrylamide)[(C6H11NO)n] | ![]() | 氢键 Hydrogen bond ( | 纵/横向拉伸强度: 317/ 152 kPa, 纵/横向杨氏模量: 5.4/0.31 MPa, 纵/横向韧性: 39.2/57.1 kJ·m?3 Longitudinal/transverse tensile strength: 317/152 kPa,longitudinal/transverse Young’s modulus:5.4/0.31 MPa,longitudinal/transverse toughness:39.2/57.1 kJ·m?3 ( | 光学应用 Optical applications ( |
蒋金成, 李 璟, 张镜元, 等. 油蜡热处理对木材物理性能及尺寸稳定性的影响. 森林工程, 2024, 40 (1): 106- 113. | |
Jiang J C, Li J, Zhang J Y, et al. Effect of oil wax heat treatment on physical properties and dimensional stability of wood. Forest Engineering, 2024, 40 (1): 106- 113. | |
荆明星, 杨 宇, 付依扬, 等. 木材改良湿气发电机的设计及性能研究. 森林工程, 2023, 39 (6): 109- 115. | |
Jing M X, Yang Y, Fu Y Y, et al. Design and performance study of wood-based moist-electric generator. Forest Engineering, 2023, 39 (6): 109- 115. | |
李 坚. 2014. 木材科学. 3版. 北京: 科学出版社. | |
Li J. 2014. Wood science. 3rd ed. Beijing: Science Press. [in Chinese] | |
刘瑞雪, 陈纪超, 李迎博. 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展. 轻工学报, 2021, 36 (6): 110- 124.
doi: 10.12187/2021.06.013 |
|
Liu R X, Chen J C, Li Y B. Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction. Journal of Light Industry, 2021, 36 (6): 110- 124.
doi: 10.12187/2021.06.013 |
|
Ajdary R, Tardy B L, Mattos B D, et al. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Advanced Materials, 2021, 33 (28): 2001085.
doi: 10.1002/adma.202001085 |
|
Atalla R H, Hackney J M, Uhlin I, et al. Hemicelluloses as structure regulators in the aggregation of native cellulose. International Journal of Biological Macromolecules, 1993, 15 (2): 109- 112.
doi: 10.1016/0141-8130(93)90007-9 |
|
Chen C J, Kuang Y D, Zhu S Z, et al. Structure-property-function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5 (9): 642- 666.
doi: 10.1038/s41578-020-0195-z |
|
Chen G G, Li T, Chen C J, et al. Scalable wood hydrogel membrane with nanoscale channels. ACS Nano, 2021a, 15 (7): 11244- 11252.
doi: 10.1021/acsnano.0c10117 |
|
Chen C C, Wang Y R, Zhou T, et al. Toward strong and tough wood-based hydrogels for sensors. Biomacromolecules, 2021b, 22 (12): 5204- 5213.
doi: 10.1021/acs.biomac.1c01141 |
|
Chen J Q, Chen J S, Zhu Z L, et al. Drug-loaded and anisotropic wood-derived hydrogel periosteum with super antibacterial, anti-inflammatory, and osteogenic activities. ACS Applied Materials & Interfaces, 2022a, 14 (45): 50485- 50498. | |
Chen L, Wei X S, Wang F, et al. In-situ polymerization for mechanical strong composite actuators based on anisotropic wood and thermoresponsive polymer. Chinese Chemical Letters, 2022b, 33 (5): 2635- 2638.
doi: 10.1016/j.cclet.2021.09.075 |
|
Cheng J, Jia Z, Li T. A constitutive model of microfiber reinforced anisotropic hydrogels: with applications to wood-based hydrogels. Journal of the Mechanics and Physics of Solids, 2020, 138, 103893.
doi: 10.1016/j.jmps.2020.103893 |
|
Correa S, Grosskopf A K, Lopez Hernandez H, et al. Translational applications of hydrogels. Chemical Reviews, 2021, 121 (18): 11385- 11457.
doi: 10.1021/acs.chemrev.0c01177 |
|
Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 2013, 47 (1): 141- 161.
doi: 10.1007/s00226-012-0514-7 |
|
Engelund E T. 2011. Wood-water interactions: Linking molecular level mechanisms with macroscopic performance. Kongens Lyngby: Technical University of Denmark. | |
Gao C X, Gao Z C, Wei Y Q, et al. Flexible wood enhanced poly(acrylic acid-co-acrylamide)/quaternized gelatin hydrogel electrolytes for high-energy-density supercapacitors. ACS Applied Materials & Interfaces, 2023, 15 (2): 2951- 2960. | |
Gao R N, Xiao S L, Gan W T, et al. Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation. ACS Sustainable Chemistry & Engineering, 2018, 6 (7): 9047- 9055. | |
Haq M A, Su Y L, Wang D J. Mechanical properties of PNIPAM based hydrogels: a review. Materials Science and Engineering, 2017, 70, 842- 855.
doi: 10.1016/j.msec.2016.09.081 |
|
Hatakeyama H, Hatakeyama T. 2009. Lignin structure, properties, and applications//Biopolymers: lignin, proteins, bioactive nanocomposites. Heidelberg: Springer, 1−63. | |
Hu X Y, Ma Z W, Li J G, et al. Superior water anchoring hydrogel validated by colorimetric sensing. Materials Horizons, 2020, 7 (12): 3250- 3257.
doi: 10.1039/D0MH01383H |
|
Ibn Yaich A, Edlund U, Albertsson A C. Transfer of biomatrix/wood cell interactions to hemicellulose-based materials to control water interaction. Chemical Reviews, 2017, 117 (12): 8177- 8207.
doi: 10.1021/acs.chemrev.6b00841 |
|
Isogai A, Zhou Y X. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: nanonetworks, nanofibers, and nanocrystals. Current Opinion in Solid State and Materials Science, 2019, 23 (2): 101- 106.
doi: 10.1016/j.cossms.2019.01.001 |
|
Jakes J E, Hunt C G, Zelinka S L, et al. Effects of moisture on diffusion in unmodified wood cell walls: a phenomenological polymer science approach. Forests, 2019, 10 (12): 1084.
doi: 10.3390/f10121084 |
|
Kaffashsaie E, Yousefi H, Nishino T, et al. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers. Carbohydrate Polymers, 2021, 262, 117938.
doi: 10.1016/j.carbpol.2021.117938 |
|
Karaaslan M A, Tshabalala M A, Yelle D J, et al. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydrate Polymers, 2011, 86 (1): 192- 201.
doi: 10.1016/j.carbpol.2011.04.030 |
|
Keplinger T, Cabane E, Berg J K, et al. Smart hierarchical bio-based materials by formation of stimuli-responsive hydrogels inside the microporous structure of wood. Advanced Materials Interfaces, 2016, 3 (16): 1600233.
doi: 10.1002/admi.201600233 |
|
Khodayari A, Thielemans W, Hirn U, et al. Cellulose-hemicellulose interactions: a nanoscale view. Carbohydrate Polymers, 2021, 270, 118364.
doi: 10.1016/j.carbpol.2021.118364 |
|
Kong W Q, Wang C W, Jia C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Advanced Materials, 2018, 30 (39): 1801934.
doi: 10.1002/adma.201801934 |
|
Li J Y, Ma E N. Characterization of water in wood by time-domain nuclear magnetic resonance spectroscopy (TD-NMR): a review. Forests, 2021, 12 (7): 886.
doi: 10.3390/f12070886 |
|
Li Y Y, Fu Q L, Rojas R, et al. Lignin-retaining transparent wood. ChemSusChem, 2017, 10 (17): 3445- 3451.
doi: 10.1002/cssc.201701089 |
|
Liu C, Li Y M, Hou Y. A simple environment-friendly process for preparing high-concentration alkali lignin nanospheres. European Polymer Journal, 2019, 112, 15- 23.
doi: 10.1016/j.eurpolymj.2018.12.031 |
|
Liu J M, Wang D Q, Li Y Y, et al. Overall structure construction of an intervertebral disk based on highly anisotropic wood hydrogel composite materials with mechanical matching and buckling buffering. ACS Applied Materials & Interfaces, 2021, 13 (13): 15709- 15719. | |
Liu Z H, Li B Z, Yuan J S, et al. Creative biological lignin conversion routes toward lignin valorization. Trends in Biotechnology, 2022, 40 (12): 1550- 1566.
doi: 10.1016/j.tibtech.2022.09.014 |
|
Lu Y, Gao R N, Xiao S L, et al. 2018. Cellulose based aerogels: processing and morphology//Biobased aerogels. Cambridge: Royal Society of Chemistry, 25−41. | |
Lu Y, Ma Y Y, Deng F, et al. Gradient wood-derived hydrogel actuators constructed by an isotropic-anisotropic structure strategy with rapid thermal-response, high strength and programmable deformation. Chemical Engineering Journal, 2025, 504, 158903.
doi: 10.1016/j.cej.2024.158903 |
|
Meier R J, Maple J R, Hwang M J, et al. Molecular modeling urea- and melamine-formaldehyde resins. 1. A force field for urea and melamine. The Journal of Physical Chemistry, 1995, 99 (15): 5445- 5456.
doi: 10.1021/j100015a030 |
|
Nie K C, Wang Z S, Tang R X, et al. Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing. ACS Applied Materials & Interfaces, 2020, 12 (38): 43024- 43031. | |
Ouyang F Y, Wang W. Effect of thermo-hydro-mechanical treatment on mechanical properties of wood cellulose: a molecular dynamics simulation. Forests, 2022, 13 (6): 903.
doi: 10.3390/f13060903 |
|
Pettersen R C. The chemical composition of wood. Advances in Chemistry Series, 1984, 207, 57- 126. | |
Potukuchi S, Chinthapenta V, Raju G. A review of NDE techniques for hydrogels. Nondestructive Testing and Evaluation, 2023, 38 (1): 1- 33.
doi: 10.1080/10589759.2022.2144304 |
|
Pu Y Q, Zhang D C, Singh P M, et al. 2008. The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2(1): 58−73. | |
Ratner B D, Latour R A. 2020. Role of water in biomaterials//Biomaterials science. Amsterdam: Elsevier, 77−82. | |
Rico-García D, Ruiz-Rubio L, Pérez-Alvarez L, et al. Lignin-based hydrogels: synthesis and applications. Polymers, 2020, 12 (1): 81.
doi: 10.3390/polym12010081 |
|
Sano K, Ishida Y, Aida T. Synthesis of anisotropic hydrogels and their applications. Angewandte Chemie International Edition, 2018, 57 (10): 2532- 2543.
doi: 10.1002/anie.201708196 |
|
Šebenik U, Lapasin R, Krajnc M. Rheology of aqueous dispersions of Laponite and TEMPO-oxidized nanofibrillated cellulose. Carbohydrate Polymers, 2020, 240, 116330.
doi: 10.1016/j.carbpol.2020.116330 |
|
Siau J F. 1984. Transport processes in wood. Heidelberg: Springer-Verlag. | |
Skaar C. 2012. Wood-water relations. Heidelberg: Springer Science & Business Media. | |
Stagno V, Ricci S, Longo S, et al. Discrimination between softwood and hardwood based on hemicellulose content obtained with portable nuclear magnetic resonance. Cellulose, 2022, 29 (14): 7917- 7934.
doi: 10.1007/s10570-022-04728-x |
|
Steck J, Kim J, Yang J W, et al. Topological adhesion. I. Rapid and strong topohesives. Extreme Mechanics Letters, 2020, 39, 100803.
doi: 10.1016/j.eml.2020.100803 |
|
Steed J W, Atwood J L, Gale P A. 2012. Definition and emergence of supramolecular chemistry. Wiley: Chichester. | |
Thybring E E, Fredriksson M, Zelinka S L, et al. Water in wood: a review of current understanding and knowledge gaps. Forests, 2022, 13 (12): 2051.
doi: 10.3390/f13122051 |
|
Vigata M, Meinert C, Bock N, et al. Deciphering the molecular mechanism of water interaction with gelatin methacryloyl hydrogels: role of ionic strength, pH, drug loading and hydrogel network characteristics. Biomedicines, 2021, 9 (5): 574.
doi: 10.3390/biomedicines9050574 |
|
Wang G F, Liu Y, Zu B Y, et al. Reversible adhesive hydrogel with enhanced sampling efficiency boosted by hydrogen bond and van der Waals force for visualized detection. Chemical Engineering Journal, 2023, 455, 140493.
doi: 10.1016/j.cej.2022.140493 |
|
Wang M H, Bai J Z, Shao K, et al. Poly(vinyl alcohol) hydrogels: the old and new functional materials. International Journal of Polymer Science, 2021, 2021, 2225426. | |
Wang W, Zhang Y Y, Liu W G. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Progress in Polymer Science, 2017, 71, 1- 25.
doi: 10.1016/j.progpolymsci.2017.04.001 |
|
Wang Y S, Wang J L, Ling S J, et al. Wood-derived nanofibrillated cellulose hydrogel filters for fast and efficient separation of nanoparticles. Advanced Sustainable Systems, 2019, 3 (9): 1900063.
doi: 10.1002/adsu.201900063 |
|
Wang S N, Chen H, Li K, et al. Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM. Composites Part A: Applied Science and Manufacturing, 2022a, 154, 106757.
doi: 10.1016/j.compositesa.2021.106757 |
|
Wang Y L, Gui C J, Wu J Y, et al. Spatio-temporal modification of lignin biosynthesis in plants: a promising strategy for lignocellulose improvement and lignin valorization. Frontiers in Bioengineering and Biotechnology, 2022b, 10, 917459.
doi: 10.3389/fbioe.2022.917459 |
|
Wang Z X, Zhou Z J, Wang S J, et al. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Composites Part B: Engineering, 2022c, 239, 109954.
doi: 10.1016/j.compositesb.2022.109954 |
|
Xue B, Qin M, Wang T K, et al. Electrically controllable actuators based on supramolecular peptide hydrogels. Advanced Functional Materials, 2016, 26 (48): 9053- 9062.
doi: 10.1002/adfm.201603947 |
|
Yan G H, He S M, Chen G F, et al. Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the hofmeister effect for human motion monitoring. Nano-Micro Letters, 2022, 14 (1): 84.
doi: 10.1007/s40820-022-00827-3 |
|
Youssefian S, Jakes J E, Rahbar N. Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture. Scientific Reports, 2017, 7, 2054.
doi: 10.1038/s41598-017-02288-w |
|
Zhang X J, Xiang J X, Hong Y L, et al. Recent advances in design strategies of tough hydrogels. Macromolecular Rapid Communications, 2022a, 43 (15): 2200075.
doi: 10.1002/marc.202200075 |
|
Zhang D T, Yang K, Liu X Y, et al. Boosting the photothermal conversion efficiency of MXene film by porous wood for light-driven soft actuators. Chemical Engineering Journal, 2022b, 450, 138013.
doi: 10.1016/j.cej.2022.138013 |
|
Zhang Z C, Yu C Y, Peng Z Y, et al. Mechanically stiff and high-areal-performance integrated all-in-wood supercapacitors with electroactive biomass-based hydrogel. Cellulose, 2021, 28 (1): 389- 404.
doi: 10.1007/s10570-020-03509-8 |
|
Zhao X J, Liang Z W, Huang Y B, et al. Influence of phytic acid on flame retardancy and adhesion performance enhancement of poly (vinyl alcohol) hydrogel coating to wood substrate. Progress in Organic Coatings, 2021, 161, 106453.
doi: 10.1016/j.porgcoat.2021.106453 |
|
Zhou Y, Jin L H. Hydrolysis-induced large swelling of polyacrylamide hydrogels. Soft Matter, 2020, 16 (24): 5740- 5749.
doi: 10.1039/D0SM00663G |
|
Zhou Y, Liu J M, Li H, et al. Molecular recognition of the self-assembly mechanism of glycosyl amino acetate-based hydrogels. ACS Omega, 2021, 6 (33): 21801- 21808.
doi: 10.1021/acsomega.1c03510 |
|
Zhu H L, Luo W, Ciesielski P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116 (16): 9305- 9374.
doi: 10.1021/acs.chemrev.6b00225 |
[1] | Wang Yafei, Liu Yang, Wang Kai, Ding Xiaofei, Xu Kexin, Jia Liming, Xi Benye. Effects of Water-nitrogen Coupling Treatment on Growth of Populus tomentosa Pulp Forest and the Soil Moisture-nutrient Characteristics [J]. Scientia Silvae Sinicae, 2025, 61(5): 85-97. |
[2] | Zhang Jiajia, Du Gaigai, Li Li, Diao Songfeng. Physiological Changes during the Rooting Process of Softwood Cuttings of Diospyros kaki [J]. Scientia Silvae Sinicae, 2025, 61(5): 98-107. |
[3] | Zhu Ya, Wu Xizhi, Huang Yuanshuo. Visual Detection Method of Wood Sanding Surface Roughness Based on Local Autocorrelation Function Entropy [J]. Scientia Silvae Sinicae, 2025, 61(5): 199-206. |
[4] | Li Qinyuan, Zhou Zeyuan, Li Tingshan, Yu Haiqun, Zhao Hongxian, Liu Xinyue, Gao Yao, Liu Peng, Zha Tianshan. Growing Season Dynamics and Influencing Factors of Resource Use Efficiency of a Larix gmelinii var. principis-rupprechtii Natural Secondary Forest in Baihuashan, Beijing [J]. Scientia Silvae Sinicae, 2025, 61(4): 69-80. |
[5] | Quansheng Men,Dalie Liu. Research and Implementation of Shaping Methods of Wood Rod Lumber Units [J]. Scientia Silvae Sinicae, 2025, 61(3): 182-188. |
[6] | Ying Zhu,Xinyu Zhou,Yuqing Feng,Hui Wang,Xin Li. Resilience Evaluation of Wetland Ecological Network in Water Network City: a Case Study of Suzhou Central Urban Area [J]. Scientia Silvae Sinicae, 2025, 61(2): 62-73. |
[7] | Guo Juan, Jiao Lichao, He Tuo, Ma Lingyu, Jiang Xiaomei, Yin Yafang. New Research Progress on Quantitative Wood Anatomy [J]. Scientia Silvae Sinicae, 2025, 61(2): 204-218. |
[8] | Cuiping Wu,Caoliang Jin,Jianping Ying,Jinwei Suo,Jiasheng Wu,Yuanyuan Hu. Effects of Quota Water Addition on Anatomical Changes and Gene Expression in Aril Cracking of Torreya grandis cv. ‘Merrilii’ During Near Maturity Stage [J]. Scientia Silvae Sinicae, 2025, 61(1): 115-125. |
[9] | Zhihong Li,Wei Zhang,Xinkang Zhao,Jinping Shu,Haojie Wang. Phenotypic Variation of Bursaphelenchus xylophilus in Different Occurrence Areas of Zhejiang Province [J]. Scientia Silvae Sinicae, 2025, 61(1): 137-149. |
[10] | Yan Chen,Surong Meng,Anmin Huang,Yingying Su,Bailing Sun. The Influence of Melamine-Urea-Glyoxal (MUG) Resin Impregnation Modification on the Physical and Mechanical Properties of Castanopsis hystrix Wood [J]. Scientia Silvae Sinicae, 2025, 61(1): 166-175. |
[11] | Jing Xie,Feng Zhang,Zeyuan Zhou,Haiqun Yu,Yi Han,Chunxin Yang,Wei Jiang,Jinzu Liu,Boen Liu,He Liu. Seasonal Variations in Water Use Efficiency of Plantation Ecosystem in an Urban Park of Beijing [J]. Scientia Silvae Sinicae, 2024, 60(9): 12-17. |
[12] | Wankuan Zhu,Zhichao Wang,Apeng Du,Yuxing Xu. Seasonal Patterns of Carbon and Water Fluxes and Their Environmental Biological Control in the Eucalyptus Plantation in Zhanjiang of Guangdong Province [J]. Scientia Silvae Sinicae, 2024, 60(9): 18-32. |
[13] | Mingwei Zhu,Wei Zhao,Wei Fu,Yunpeng Gao,Wenwu Wang,Zhijun Xie,Shuxian Li. Seed Formulation and Temporal and Spatial Water Distributions in Developing Sophora japonica Seeds [J]. Scientia Silvae Sinicae, 2024, 60(9): 41-49. |
[14] | Yingqi He,Lufei Wang,Yamei Zhang,Yanglun Yu,Wenji Yu. Effect of Compression Ratios on the Surface Hardness of Poplar Wood Scrimber [J]. Scientia Silvae Sinicae, 2024, 60(9): 141-149. |
[15] | Yamin Du,Zhu Li,Jiali Jiang,Fangyu Yin,Jianxiong Lü. Water Vapor Sorption Characteristics of Wood During Cyclic Adsorption-Desorption Processes [J]. Scientia Silvae Sinicae, 2024, 60(9): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||