Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (12): 83-93.doi: 10.11707/j.1001-7488.LYKX20250026
• Research papers • Previous Articles
Peidong Zhang1,Tiantian Ma1,Fei Yan1,*(
),Xiaoyuan Zhang2,Zhihao Wang3,Mu Liu4
Received:2025-01-19
Revised:2025-04-25
Online:2025-12-25
Published:2026-01-08
Contact:
Fei Yan
E-mail:yanfei522@bjfu.edu.cn
CLC Number:
Peidong Zhang,Tiantian Ma,Fei Yan,Xiaoyuan Zhang,Zhihao Wang,Mu Liu. Evaluating Radiation Loss Caused by Neighboring Trees Using Computational Virtual Measurement[J]. Scientia Silvae Sinicae, 2025, 61(12): 83-93.
Table 1
Basic overview of the study area and scanning equipment"
| 项目 Item | 信息 Information | 参数 Parameter |
| 研究样地 Research plot | 面积 | 32×32 |
| Area/m2 | ||
| 样地树木总数 | 51 | |
| Total number of trees in the plot | ||
| 林分密度 | 600 | |
| Stand density/(N·hm?2) | ||
| 扫描设备 Scanning equipment | 扫描仪型号 | HDS6100 |
| Scanner model | ||
| 测量系统 | Leica Geosystems | |
| Measurement system | ||
| 扫描仪波长 | 650~690 | |
| Scanner wavelength/nm | ||
| 视场角 | 360×310 | |
| Field angle/(°) | ||
| 25 m处精度 | ±2 | |
| Accuracy at a distance of 25 meters/mm | ||
| 扫描模式 | High density | |
| Scan patterns | ||
| 水平/垂直角度增量 | 0.036 | |
| Horizontal / vertical angle increment/(°) | ||
| 在25 m距离处的点间距 | 15.7 | |
| Point spacing at a distance of 25 meters/mm |
Table 2
Result of sunlight analysis on ten scenes in the virtual sample plot"
| 场景 Scenes | 表面面积按辐照时间分类 Surface area classified by irradiation duration/m2 | 网格中三角形数量 Number of triangles in mesh | ||||||||
| 0~1 h | 1~2 h | 2~3 h | 3~4 h | 4~5 h | 5~6 h | 6~7 h | 7~8 h | 8 h | ||
| a | 501.91 | 20.99 | 16.14 | 21.07 | 6.78 | 4.66 | 3.35 | 3.50 | 1.68 | 2 081 198 |
| b | 77.63 | 6.15 | 5.33 | 7.36 | 2.60 | 1.87 | 1.52 | 1.57 | 0.97 | 758 991 |
| c | 1.09 | 0.27 | 0.34 | 0.19 | 0.28 | 0.14 | 0.10 | 0.21 | 0.04 | 560 072 |
| d | 527.98 | 22.70 | 15.75 | 8.59 | 2.46 | 1.10 | 1.08 | 0.35 | 0.08 | 1 440 302 |
| e | 83.60 | 8.59 | 6.48 | 2.78 | 1.54 | 1.16 | 0.82 | 0.01 | 0.00 | 537 462 |
| f | 1.35 | 0.45 | 0.29 | 0.25 | 0.14 | 0.15 | 0.05 | 0.00 | 0.00 | 368 727 |
| g | 599.60 | 131.71 | 90.11 | 56.46 | 43.75 | 24.79 | 20.84 | 11.13 | 0.93 | 573 345 |
| h | 20.09 | 13.03 | 16.28 | 15.93 | 17.66 | 15.08 | 13.15 | 8.00 | 0.26 | 7 761 180 |
| i | 620.31 | 142.17 | 96.11 | 46.61 | 35.56 | 18.16 | 14.62 | 5.74 | 0.04 | 385 326 |
| j | 21.60 | 14.81 | 17.37 | 16.28 | 16.16 | 13.82 | 13.81 | 9.05 | 0.00 | 5 656 708 |
Table 3
The difference of light conditions between shaded areas influenced by neighboring trees and unshaded areas"
| 场景 Scenes | 表面面积按辐照时间分类 Surface area classified by irradiation duration/m2 | 三角形的损失率 Loss rate of triangles(%) | ||||||||
| 0~1 h | 1~2 h | 2~3 h | 3~4 h | 4~5 h | 5~6 h | 6~7 h | 7~8 h | 8 h | ||
| d~a | 26.07 | 1.71 | ?0.38 | ?12.49 | ?4.32 | ?3.56 | ?2.27 | ?3.15 | ?1.60 | 30.79 |
| e~d | 5.98 | 2.44 | 1.14 | ?4.57 | ?1.05 | ?0.71 | ?0.69 | ?1.57 | ?0.97 | 29.19 |
| f~c | 0.26 | 0.18 | ?0.06 | 0.06 | ?0.14 | 0.00 | ?0.04 | ?0.21 | ?0.04 | 34.16 |
| i~g | 20.71 | 10.46 | 6.00 | ?9.85 | ?8.19 | ?6.63 | ?6.22 | ?5.39 | ?0.89 | 32.79 |
| j~h | 1.51 | 1.78 | 1.09 | 0.35 | ?1.50 | ?1.26 | ?0.66 | ?1.05 | ?0.26 | 27.11 |
Table 4
The area transfer between analysis of shading caused by neighboring trees and the analysis of sunlight under unshaded conditions"
| 树木 Tree | 按辐照持续时间分类的表面积转移率 Surface area transfer rates by duration of irradiation(%) | ||||||||
| 0~1 h | 1~2 h | 2~3 h | 3~4 h | 4~5 h | 5~6 h | 6~7 h | 7~8 h | 8 h | |
| T27 voxel | 93.86 | 6.16 | ?1.37 | ?44.97 | ?15.55 | ?12.82 | ?8.17 | ?11.34 | ?5.76 |
| T26 voxel | 62.55 | 25.52 | 11.92 | ?47.80 | ?10.98 | ?7.43 | ?7.22 | ?16.42 | ?10.15 |
| T26 QSM | 52.53 | 36.36 | ?12.12 | 12.12 | ?28.28 | 0.00 | ?8.08 | ?42.42 | ?8.08 |
| T27 CCC | 55.72 | 28.14 | 16.14 | ?26.50 | ?22.03 | ?17.84 | ?16.73 | ?14.50 | ?2.40 |
| T26 CCC | 31.92 | 37.63 | 23.14 | 7.40 | ?31.71 | ?26.64 | ?13.95 | ?22.20 | ?5.50 |
Table 5
Assessment of the energy loss for single trees due to the neighborhood shading"
| 树木 Trees | T27体素模型 T27 Voxel | T26体素模型 T26 Voxel | T26 QSM模型 T26 QSM | T27 CCC模型 T27 CCC | T26 CCC模型 T26 CCC | |
| 表面类型分类 (按照辐射持续时间) Surface area classification based on by irradiation duration/(kW·h) | 0~1 h | 1.434 | 0.329 | 0.014 | 2.28 | 0.17 |
| 1~2 h | 0.282 | 0.403 | 0.030 | 1.73 | 0.29 | |
| 2~3 h | ?0.105 | 0.314 | ?0.017 | 1.65 | 0.30 | |
| 3~4 h | ?4.809 | ?1.759 | 0.023 | ?3.79 | 0.13 | |
| 4~5 h | ?2.138 | ?0.520 | ?0.069 | ?4.05 | ?0.74 | |
| 5~6 h | ?2.154 | ?0.430 | 0.000 | ?4.01 | ?0.56 | |
| 6~7 h | ?1.623 | ?0.493 | ?0.029 | ?4.45 | ?0.47 | |
| 7~8 h | ?2.599 | ?1.295 | ?0.173 | ?4.45 | ?0.57 | |
| 8 h | ?1.408 | ?0.854 | ?0.035 | ?0.78 | ?0.23 | |
| 能量损失 Loss of energy/(kW·h) | ?13.12 | ?4.31 | ?0.26 | 15.87 | 2.57 | |
| 原始能量 Original energy/(kW·h) | 28.95 | 10.97 | 0.71 | 37.17 | 5.62 | |
| 损失率 Loss rate (%) | 45.32 | 39.26 | 35.80 | 42.70 | 45.72 | |
| 崔佳佳, 铁 牛. 大兴安岭北部森林群落结构及植物多样性特征研究. 西北林学院学报, 2021, 36 (2): 24- 30. | |
| Cui J J, Tie N. Forest community structure and plant diversity characteristics in northern greater Khingan Mountains. Journal of Northwest Forestry University, 2021, 36 (2): 24- 30. | |
| 陈文盛, 丁慧慧, 李江荣. 森林小气候特征研究进展. 湖南生态科学学报, 2022, 9 (3): 89- 95. | |
| Chen W S, Ding H H, Li J R, et al. Research progress on microclimate characteristics of different forest habitats. Journal of Hunan Ecological Science, 2022, 9 (3): 89- 95. | |
| 王智超, 马天天, 邵亚奎, 等. 面向未来的中国智慧林业: 观测仪器体系的演进与发展趋势. 林业科学, 2024, 60 (4): 1- 15. | |
| Wang Z C, Ma T T, Shao Y K, et al. Future oriented smart forestry in China: evolution and development trends of observation instrument systems. Scientia Silvae Sinicae, 2024, 60 (4): 1- 15. | |
| 徐自为, 刘绍民, 车 涛, 等. 黑河流域地表过程综合观测网的运行、维护与数据质量控制. 资源科学, 2020, 42 (10): 1975- 1986. | |
| Xu Z W, Liu S M, Che T, et al. Operation and maintenance and data quality control of the Heihe integrated observatory network. Resources Science, 2020, 42 (10): 1975- 1986. | |
| 张 宇, 张怀清, 安 锋, 等. 2024. 基于计算机模拟模型的林木冠层太阳短波辐射定量分析方法. 林业科学, 60(4): 16-30. | |
| Zhang Y, Zhang H Q, An F, et al. 2024. A quantitative analysis method of solar shortwave radiation within forest canopy based on a computer simulation model. Scientia Silvae Sinicae, 60(4): 1–15. [in Chinese] | |
| 赵 宽, 周葆华, 马万征, 等. 不同环境胁迫对根系分泌有机酸的影响研究进展. 土壤, 2016, 48 (2): 235- 240. | |
| Zhao K, Zhou B H, Ma W Z, et al. The influence of different environmental stresses on root-exuded organic acids: a review. Soils, 2016, 48 (2): 235- 240. | |
| 赵鹏武, 管立娟, 刘兵兵. 等. 我国半干旱区东段森林动态研究现状及展望. 世界林业研究, 2021, 34 (2): 74- 79. | |
| Zhao P W, Guan L J, Liu B B, et al. Current research and prospect of forest dynamics in eastern section of semi-arid area in China. World Forestry Research, 2021, 34 (2): 74- 79. | |
|
Aalto I, Aalto J, Hancock S, et al. Quantifying the impact of management on the three-dimensional structure of boreal forests. Forest Ecology and Management, 2023, 535, 120885.
doi: 10.1016/j.foreco.2023.120885 |
|
|
Abegg M, Bösch R, Kükenbrink D, et al. Tree volume estimation with terrestrial laser scanning: testing for bias in a 3D virtual environment. Agricultural and Forest Meteorology, 2023, 331, 109348.
doi: 10.1016/j.agrformet.2023.109348 |
|
|
Babst F, Bouriaud O, Poulter B, et al. Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 2019, 5 (1): 4313.
doi: 10.1126/sciadv.aat4313 |
|
| Bienert A, Hess C, Maas H G, et al. 2014. A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, XL–5: 101–106. | |
| Cannon C H, Borchetta C, Anderson D L, et al. 2021. Extending our scientific reach in arboreal ecosystems for research and management. Frontiers in Forests and Global Change, 4: 712165. | |
| Colaizzi P D, Evett S R, Howell T A, et al. 2012. Radiation model for row crops: I. geometric view factors and parameter optimization. Agronomy Journal, 104(2): 225–240. | |
|
De Pauw K, Sanczuk P, Meeussen C, et al. Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 2022, 233 (1): 219- 235.
doi: 10.1111/nph.17803 |
|
| Dou H, Niu G. 2020. Plant responses to light. Plant Factory, 153−166. | |
|
Duan Y, Yang C, Chen H, et al. Low-complexity point cloud denoising for LiDAR by PCA-based dimension reduction. Optics Communications, 2021, 482, 126567.
doi: 10.1016/j.optcom.2020.126567 |
|
|
Forrester D I. Linking forest growth with stand structure: tree size inequality, tree growth or resource partitioning and the asymmetry of competition. Forest Ecology and Management, 2019, 447, 139- 157.
doi: 10.1016/j.foreco.2019.05.053 |
|
| Garlick K, Drew R E, Rajaniemi T K. Root responses to neighbors depend on neighbor identity and resource distribution. Plant and Soil, 2021, 467 (1): 227- 237. | |
| Gao W, Larjavaara M, 2024. Wind disturbance in forests: a bibliometric analysis and systematic review. Forest Ecology and Management, 564: 122001. | |
| Gendron F, Messier C, Comeau P G, 2001. Temporal variations in the understorey photosynthetic photon flux density of a deciduous stand: the effects of canopy development, solar elevation, and sky conditions. Agricultural and Forest Meteorology, 106(1): 23–40. | |
|
Giday K, Aerts R, Muys B, et al. The effect of shade levels on the survival and growth of planted trees in dry afromontane forest: implications for restoration success. Journal of Arid Environments, 2019, 170, 103992.
doi: 10.1016/j.jaridenv.2019.103992 |
|
| Hackenberg J, Morhart C, Sheppard J, et al. 2014. Highly accurate tree models derived from terrestrial laser scan data: a method description. Forests, 5(5): 1069–1105. | |
| Hosoi F, Omasa K. 2006. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 44(12): 3610–3618. | |
| Kothari S, Montgomery R A, Cavender-Bares J, 2021. Physiological responses to light explain competition and facilitation in a tree diversity experiment. Journal of Ecology, 109(5): 2000–2018. | |
|
Liang X, Hyyppä J, Kaartinen H, et al. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144, 137- 179.
doi: 10.1016/j.isprsjprs.2018.06.021 |
|
|
Liang X, Kankare V, Hyyppä J, et al. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115, 63- 77.
doi: 10.1016/j.isprsjprs.2016.01.006 |
|
|
Luo C, Wang Z, Sauer T J, et al. Portable canopy chamber measurements of evapotranspiration in corn, soybean, and reconstructed prairie. Agricultural Water Management, 2018, 198, 1- 9.
doi: 10.1016/j.agwat.2017.11.024 |
|
| Luo W, Liang J, Cazzolla Gatti R, et al. 2019. Parameterization of biodiversity–productivity relationship and its scale dependency using georeferenced tree-level data. Journal of Ecology, 107(3): 1106–1119. | |
|
Martínez Cano I, Shevliakova E, Malyshev S, et al. Allometric constraints and competition enable the simulation of size structure and carbon fluxes in a dynamic vegetation model of tropical forests (LM3PPA-TV). Global Change Biology, 2020, 26 (8): 4478- 4494.
doi: 10.1111/gcb.15188 |
|
|
Matsuo T, Martínez Ramos M, Bongers F, et al. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 2021, 109 (8): 2871- 2884.
doi: 10.1111/1365-2745.13680 |
|
|
Neudam L C, Fuchs J M, Mjema E, et al. Simulation of silvicultural treatments based on real 3D forest data from mobile laser scanning point clouds. Forests and People, 2023, 11, 100372.
doi: 10.1016/j.tfp.2023.100372 |
|
|
Patacca M, Lindner M, Lucas-Borja M E, et al. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology, 2023, 29 (5): 1359- 1376.
doi: 10.1111/gcb.16531 |
|
|
Piato K, Lefort F, Subía C, et al. Effects of shade trees on Robusta coffee growth, yield and quality: a meta-analysis. Agronomy for Sustainable Development, 2020, 40 (6): 38.
doi: 10.1007/s13593-020-00642-3 |
|
| Picard N, 2021. The role of spatial competitive interactions between trees in shaping forest patterns. Theoretical Population Biology, 142: 36–45. | |
|
Qi Y, Coops N C, Daniels L D, et al. Comparing tree attributes derived from quantitative structure models based on drone and mobile laser scanning point clouds across varying canopy cover conditions. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192, 49- 65.
doi: 10.1016/j.isprsjprs.2022.07.021 |
|
| Raumonen P, Kaasalainen M, Åkerblom M, et al. 2013. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing. 5(2): 491–520. | |
| Ross C W, Loudermilk E L, Skowronski N, et al. 2022. LiDAR voxel-size optimization for canopy gap estimation. Remote Sensing, 14(5): 1054. | |
| Sarkar D, Chapman C A, 2021. The smart forest conundrum: contextualizing pitfalls of sensors and AI in conservation science for tropical forests. Tropical Conservation Science, 14: 19400829211014740. | |
| Song Q, Xiao H, Xiao X, et al. A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agricultural and Forest Meteorology, 2016, 217, 101- 107. | |
| Song Q, Zhu X G, 2018. Measuring canopy gas exchange using CAnopy photosynthesis and transpiration systems (CAPTS). In Photosynthesis: Methods and Protocols, PP: 69–81 | |
| Sun J, Wang P, Li R, et al. 2022. Fast tree skeleton extraction using voxel thinning based on tree point cloud. Remote Sensing, 14(11): 2558. | |
|
Tao F, Xiao B, Qi Q, et al. Digital twin modeling. Journal of Manufacturing Systems, 2022, 64, 372- 389.
doi: 10.1016/j.jmsy.2022.06.015 |
|
|
Thammanu S, Marod D, Han H, et al. The influence of environmental factors on species composition and distribution in a community forest in northern Thailand. Journal of Forestry Research, 2021, 32 (2): 649- 662.
doi: 10.1007/s11676-020-01239-y |
|
|
Torresan C, Benito Garzón M, O’Grady M, et al. A new generation of sensors and monitoring tools to support climate-smart forestry practices. Canadian Journal of Forest Research, 2021, 51 (12): 1751- 1765.
doi: 10.1139/cjfr-2020-0295 |
|
| Tripathi S, Bhadouria R, Srivastava P, et al, 2020. Effects of light availability on leaf attributes and seedling growth of four tree species in tropical dry forest. Ecological Processes, 9(1): 2. | |
| Urraca R, Martinez-de-Pison E, Sanz-Garcia A, et al. 2017. Estimation methods for global solar radiation: case study evaluation of five different approaches in central Spain. Renewable and Sustainable Energy Reviews, 77: 1098–1113. | |
| Vanhove W, Vanhoudt N, Van Damme P, 2016. Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation. Agriculture, Ecosystems & Environment, 219: 14–25. | |
| Wang D, 2020. Unsupervised semantic and instance segmentation of forest point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 165: 86–97. | |
| Wang Z C, Lu X, An F, et al. 2022a. Integrating real tree skeleton reconstruction based on partial computational virtual measurement (CVM) with actual forest scenario rendering: a solid step forward for the realization of the digital twins of trees and forests. Remote Sensing, 14(23): 6041. | |
| Wang Q W, Robson T M, Pieristè M, et al. 2022b. Canopy structure and phenology modulate the impacts of solar radiation on C and N dynamics during litter decomposition in a temperate forest. Science of The Total Environment, 820: 153185. | |
| Wang Y, He C, Liu B, et al. Single wood parameters extraction and DBH model construction based on UAV tilt photography technology. Journal of Southwest Forestry University, 2022, 42 (1): 166- 173. | |
| Wang Z C, Zhang X, Zheng J, et al. 2021a. Design of a generic virtual measurement workflow for processing archived point cloud of trees and its implementation of light condition measurements on stems. Remote Sensing, 13(14): 2801. | |
| Wang Z C, Shen Y J, Zhang X Y, et al. 2021b. Processing point clouds using simulated physical processes as replacements of conventional mathematically based procedures: a theoretical virtual measurement for stem volume. Remote Sensing, 13(22): 4627. | |
|
Wang Z C, Zhang X, Zhang X, et al. Exploring a new physical scenario of virtual water molecules in the application of measuring virtual trees using computational virtual measurement. Forests, 2024, 15 (5): 880.
doi: 10.3390/f15050880 |
|
|
Weng E S, Malyshev S, Lichstein J W, et al. Scaling from individual trees to forests in an earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences, 2015, 12 (9): 2655- 2694.
doi: 10.5194/bg-12-2655-2015 |
|
|
Yazdi H, Shu Q, Rötzer T, et al. A multilayered urban tree dataset of point clouds, quantitative structure and graph models. Scientific Data, 2024, 11 (1): 28.
doi: 10.1038/s41597-023-02873-x |
|
| Zhang B, DeAngelis D L, 2020. An overview of agent-based models in plant biology and ecology. Annals of Botany, 126(4): 539–557. | |
|
Zuleta D, Krishna Moorthy S M, Arellano G, et al. Vertical distribution of trunk and crown volume in tropical trees. Forest Ecology and Management, 2022, 508, 120056.
doi: 10.1016/j.foreco.2022.120056 |
| [1] | Yujiao Zhang,Hengqian Zhao,Hancong Fu,Ge Liu,Xiadan Huangfu,Xuanqi Liu. Inversion Model of Aboveground Biomass at Individual Tree Scale Based on the Multiple Features of UAV Remote Sensing [J]. Scientia Silvae Sinicae, 2025, 61(8): 129-141. |
| [2] | Xia Liu,Chengxing Ling,Yongfu Chen,Hua Liu,Zhenping He,Zejiang Li,Weina Sun,Zhijie Ma,Haixia You,Wen Lü,Feng Zhao,Haowei Zeng,Xinmiao Wang. Additive Biomass Models and Carbon Content of Thirteen Typical Shrubs in Erdos Region [J]. Scientia Silvae Sinicae, 2025, 61(4): 117-128. |
| [3] | Le Chang,Xiaochen Du,Hailin Feng,Yan’e Li,Jianqin Huang. An Automatic Measurement of Standing Tree Diameter at Breast Height Based on the GC-U-Net Model [J]. Scientia Silvae Sinicae, 2025, 61(4): 20-32. |
| [4] | Biyun Wu,Xiangdong Lei,Xiao He,Yutang Li. Stand Dominant Height Estimation Methods and Site Quality Assessment for Natural Mixed Conifer-Broadleaved Forests in Changbai Mountains [J]. Scientia Silvae Sinicae, 2025, 61(2): 85-92. |
| [5] | Weisheng Zeng,Xueyun Yang,Ying Pu. Tree Crown Width Model, Stand Density Model and Their Relationships for Natural Larch [J]. Scientia Silvae Sinicae, 2025, 61(2): 93-100. |
| [6] | Guangcheng Luo,Xiao He,Xiangdong Lei,Biyun Wu,Wei Xiang. Generalized Algebraic Differential Growth Model of Dominant Height for Larix olgensis Plantations [J]. Scientia Silvae Sinicae, 2024, 60(12): 1-12. |
| [7] | Xinsheng Han,Yanhui Wang,Pengtao Yu,Zhenhua Li,Yipeng Yu,Xiao Wang. Construction of Multi-Factor Response Coupling Models of Tree Height and DBH Growth of Larix principis-rupprechtii Plantations in Northern Liupan Mountains, Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(11): 13-24. |
| [8] | Yutian Zhang,Junnan Shi,Huaiqing Zhang,Binglun Wu. Spatiotemporal Patterns and Driving Forces of Vegetation Restoration and Degradation in Dongting Lake Wetland [J]. Scientia Silvae Sinicae, 2024, 60(8): 1-13. |
| [9] | Yu Zhang,Huaiqing Zhang,Feng An,Ling Jiang,Ting Yun. A Quantitative Analysis Method of Solar Shortwave Radiation within Forest Canopy Based on a Computer Simulation Model [J]. Scientia Silvae Sinicae, 2024, 60(4): 16-30. |
| [10] | Shuai Yu,Tijiu Cai,Pide Zhang,Minglei Ren,Haiyu Zhang,Cunyong Ju. Scaling Effects of Edge Correction Methods on Spatial Structure Parameters [J]. Scientia Silvae Sinicae, 2023, 59(10): 57-65. |
| [11] | Xiaohui Yang,Jinzhuo Wu,Haoran Liu,Hao Zhong,Wenshu Lin. Estimation on Canopy Closure for Plantation Forests Based on UAV-LiDAR [J]. Scientia Silvae Sinicae, 2023, 59(8): 12-21. |
| [12] | Yancheng Qu,Yihang Jiang,Yanyan Jiang,Jianguo Zhang,Anli Luo,Xiongqing Zhang. Tree Leaf Biomass Models of Chinese fir Plantations Based on Sapwood Area and Diameter at Breast Height and Diameter at Crown Base [J]. Scientia Silvae Sinicae, 2023, 59(7): 106-114. |
| [13] | Haotong Ma,Guangze Jin,Zhili Liu. Changes of Basal Area Growth of Pinus koraiensis with Tree Ages and Impact Factors in Xiaoxing’ anling Mountains, Northeast China [J]. Scientia Silvae Sinicae, 2023, 59(7): 96-105. |
| [14] | Pei He,Junjie Wang,Shidong Xin,Zipeng Zhang,Lichun Jiang. Comparison of Four Methods on Modelling Stem Taper Function for Natural Pinus sylvestris var. mongolica and Larix gmelinii [J]. Scientia Silvae Sinicae, 2023, 59(6): 28-35. |
| [15] | Weisheng Zeng,Ying Pu,Xueyun Yang,Shanjun Yi. Growth Models and Its Climate-Driven Analysis of Carbon Storage in Tree Layers of Five Major Plantation Types in China [J]. Scientia Silvae Sinicae, 2023, 59(3): 21-30. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||