Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (8): 129-141.doi: 10.11707/j.1001-7488.LYKX20240390
• Research papers • Previous Articles Next Articles
Yujiao Zhang1,Hengqian Zhao1,2,*(),Hancong Fu1,Ge Liu1,Xiadan Huangfu1,Xuanqi Liu1
Received:
2024-06-24
Online:
2025-08-25
Published:
2025-09-02
Contact:
Hengqian Zhao
E-mail:zhaohq@cumtb.edu.cn
CLC Number:
Yujiao Zhang,Hengqian Zhao,Hancong Fu,Ge Liu,Xiadan Huangfu,Xuanqi Liu. Inversion Model of Aboveground Biomass at Individual Tree Scale Based on the Multiple Features of UAV Remote Sensing[J]. Scientia Silvae Sinicae, 2025, 61(8): 129-141.
Table 1
Summary of the sample plots in the study area"
样地编号 Plot code | 树种 Tree species | 株数 Plant number | 平均胸径 Mean DBH/cm | 平均树高 Mean height/m |
1 | 樟子松 Pinus sylvestris var. mongolica | 33 | 22.6 | 9.4 |
2 | 樟子松 Pinus sylvestris var. mongolica | 76 | 16.8 | 9.4 |
3 | 杨树 Populus | 24 | 21.1 | 13.9 |
4 | 杨树 Populus | 36 | 24.2 | 14.1 |
5 | 樟子松 Pinus sylvestris var. mongolica | 41 | 17.5 | 7.5 |
Table 2
Features extracted from point cloud data based on UAV-LiDAR"
特征 类型 Feature type | 特征缩写 Feature abbreviation | 描述 Description | 特征 类型 Feature type | 特征缩写 Feature abbreviation | 描述 Description | |
点云 高度 特征 Point cloud height feature | H_P01-95th | 点云高度百分位数Height percentiles | 点云 强度 特征 Point cloud intensity feature | I_P01-95th | 点云强度百分位数Intensity percentiles | |
H_CRR | 冠层起伏率Canopy relief rate | I_IQ | 点云强度百分位数四分位数间距Intensity percentile interquartile range | |||
H_IQ | 点云高度百分位数四分位数间距 Height percentile interquartile range | I_AAD | 点云强度平均绝对偏差Mean absolute deviation | |||
H_CV | 点云高度变异系数Variable coefficient | I_CV | 点云强度变异系数Variable coefficient | |||
H_KURT | 点云高度峰度Kurtosis | I_KURT | 点云强度峰度Kurtosis | |||
H_SKE | 点云高度偏斜度Skewness | I_SKE | 点云强度偏斜度Skewness | |||
H_MAX | 点云高度最大值Max. | I_MAX | 点云强度最大值Max. | |||
H_MIN | 点云高度最小值Min. | I_MIN | 点云强度最小值Min. | |||
H_MEAN | 点云高度平均值Mean | I_MEAN | 点云强度平均值Mean | |||
H_ MEDIAN | 点云高度中位数Median | I_ MEDIAN | 点云强度中位数Median | |||
H_STD | 点云高度标准差Standard deviation | I_STD | 点云强度标准差 Standard deviation | |||
H_V | 点云高度方差Variance | I_V | 点云强度方差Variance | |||
H_MAD | 点云高度中位数绝对偏差 Median absolute deviation | I_MAD | 点云强度中位数绝对偏差Median absolute deviation | |||
H_SQRT | 点云高度2次幂平均2nd power average | 点云冠层 结构特征 Canopy structure feature of point cloud | TH | 树高Tree height | ||
H_CURT | 点云高度3次幂平均3nd power average | CD | 冠径Canopy diameter | |||
H_AIH_IQ | 点云累积高度百分位数四分位数间距 Interquartile range of accumulate height percentile | |||||
点云密 度特征 Point cloud density feature | D_1-10 | 将点云数据从低到高分成10个相同高度的切片,每层回波数的比例就是相应的密度特征Divide the point cloud data into 10 slices of the same height from low to high, and the proportion of echoes in each layer is the corresponding density feature | CA | 树冠面积Canopy area | ||
CV | 树冠体积Canopy volume |
Table 3
Range of hyperparameter tuning for the three machine learning regression models used in this study"
模型 Model | 缩写 Abbreviations | 超参数 Hyperparameter | 数值范围 Range of values |
随机森林 Random forest | RF | n_estimators max_depth min_samples_split | [50, 300, 10] [3,10,1] [2, 10, 1] |
极端梯度提升树 Extreme gradient boosting | XGBoost | learning_rate max_depth min_child_weight | [0.01, 0.1, 0.01] [2,10,1] [1,10,1] |
分类提升算法 Categorical features gradient boosting | CatBoost | iterations learning_rate depth | [20,300, 10] [0.01,0.2,0.01] [2,10,1] |
Table 4
Accuracy analysis of individual tree segmentation"
样地编号 Plot code | 正确分割数量 Number of correct segments/plant | 欠分割数量 Number of under segments/plant | 过分割数量 Number of false segments/plant | 召回率 Recall(r) | 准确率 Precision(p) | 调和值 F-score(F) |
1 | 21 | 6 | 6 | 0.78 | 0.78 | 0.78 |
2 | 38 | 29 | 8 | 0.57 | 0.82 | 0.67 |
3 | 24 | 0 | 0 | 1 | 1 | 1 |
4 | 27 | 7 | 2 | 0.79 | 0.93 | 0.85 |
5 | 25 | 7 | 9 | 0.78 | 0.73 | 0.75 |
Fig.4
The results of the individual tree segmentation for plot 4 a: the results of the individual tree crown boundary extracted based on DOM data; b: the results of the individual tree crown segmentation based on point cloud; c: the matching results of canopy after individual tree segmentation based on point cloud; d: the post-processing results of not-matched canopy after individual tree segmentation based on point cloud."
Fig.5
The results of feature selection for Pinus sylvestris var. mongolica PIM: permutation importance mean; FISM: feature importance score mean. a, b, and c represent the feature selection results using the PI method for LiDAR, DOM, and ALL, respectively; d, e, and f represent the feature selection results using the Boruta method for LiDAR, DOM, and ALL, respectively."
Fig.6
The results of feature selection for Populus PIM: permutation importance mean;FISM: feature importance score mean. a, b, and c represent the feature selection results using the PI method for LiDAR, DOM, and ALL, respectively; d, e, and f represent the feature selection results using the Boruta method for LiDAR, DOM, and ALL, respectively."
Table 5
The statistics of the accuracy of various modeling algorithms based on different datasets RMSE kg·plant?1"
树种 Tree species | 模型 Model | 数据Data | ||||||||||||||||
LiDAR | DOM | ALL(LiDAR+DOM) | ||||||||||||||||
训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | 训练集 Training set | 测试集 Test set | |||||||||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |||||||
樟子松 Pinus sylvestris var. mongolica | PI- RF | 0.94 | 6.25 | 0.67 | 13.24 | 0.77 | 12.17 | 0.67** | 13.16 | 0.90 | 7.97 | 0.76 | 11.09 | |||||
Boruta-RF | 0.91 | 7.42 | 0.68 | 12.91 | 0.74 | 12.90 | 0.66 | 13.21 | 0.91 | 7.63 | 0.76 | 11.27 | ||||||
PI-CatBoost | 0.81 | 11.21 | 0.63 | 13.99 | 0.86 | 9.49 | 0.64 | 13.61 | 0.90 | 7.74 | 0.69 | 12.80 | ||||||
Boruta-CatBoost | 0.83 | 10.55 | 0.68 | 12.92 | 0.87 | 9.01 | 0.60 | 14.53 | 0.86 | 9.47 | 0.69 | 12.74 | ||||||
PI-XGBoost | 0.99* | 2.62 | 0.69* | 12.75 | 0.99** | 1.27 | 0.44 | 17.13 | 0.95 | 5.58 | 0.77*** | 10.94 | ||||||
Boruta-XGBoost | 0.96 | 4.97 | 0.63 | 13.88 | 0.93 | 6.41 | 0.52 | 15.84 | 0.95*** | 5.44 | 0.72 | 12.29 | ||||||
杨树 Populus | PI- RF | 0.95 | 8.31 | 0.83 | 18.81 | 0.94 | 8.94 | 0.52 | 31.15 | 0.94 | 8.99 | 0.82 | 19.18 | |||||
Boruta-RF | 0.89 | 12.26 | 0.81 | 19.64 | 0.93 | 9.85 | 0.54 | 30.65 | 0.88 | 12.62 | 0.82 | 18.90 | ||||||
PI-CatBoost | 0.94 | 8.83 | 0.80 | 19.85 | 0.99 | 3.42 | 0.48 | 32.60 | 0.99 | 2.04 | 0.84 | 17.81 | ||||||
Boruta-CatBoost | 0.95* | 8.16 | 0.75 | 22.37 | 0.99** | 0.47 | 0.59** | 28.99 | 0.99*** | 0.01 | 0.64 | 26.99 | ||||||
PI-XGBoost | 0.94 | 8.55 | 0.81 | 19.58 | 0.99 | 3.24 | 0.55 | 30.16 | 0.97 | 5.78 | 0.85*** | 17.63 | ||||||
Boruta-XGBoost | 0.94 | 8.40 | 0.85* | 17.11 | 0.98 | 4.71 | 0.54 | 30.52 | 0.91 | 10.85 | 0.82 | 19.05 |
包栎炀, 王祥军, 李少达, 等. 基于无人机LiDAR的橡胶树单木地上生物量估测. 热带作物学报, 2023, 44 (6): 1266- 1275.
doi: 10.3969/j.issn.1000-2561.2023.06.020 |
|
Bao L Y, Wang X J, Li S D, et al. Estimation of individual tree above-ground biomass of rubber tree based on UAV-LiDAR. Chinese Journal of Tropical Crops, 2023, 44 (6): 1266- 1275.
doi: 10.3969/j.issn.1000-2561.2023.06.020 |
|
戴莉莉, 李海涛, 顾海燕, 等. 特征优选下的遥感影像面向对象分类规则构建. 测绘科学, 2019, 44 (2): 26- 32. | |
Dai L L, Li H T, Gu H Y, et al. Construction of object-based image classification rules for remote sensing images supported by feature optimization. Science of Surveying and Mapping, 2019, 44 (2): 26- 32. | |
耿 林, 李明泽, 范文义, 等. 基于机载LiDAR的单木结构参数及林分有效冠的提取. 林业科学, 2018, 54 (7): 62- 72.
doi: 10.11707/j.1001-7488.20180707 |
|
Geng L, Li M Z, Fan W Y, et al. Individual tree structure parameters and effective crown of the stand extraction base on airborn LiDAR data. Scientia Silvae Sinicae, 2018, 54 (7): 62- 72.
doi: 10.11707/j.1001-7488.20180707 |
|
黄金龙, 居为民, 郑 光, 等. 基于高分辨率遥感影像的森林地上生物量估算. 生态学报, 2013, 33 (20): 6497- 6508.
doi: 10.5846/stxb201212211841 |
|
Huang J L, Ju W M, Zheng G, et al. Estimation of forest aboveground biomass using high spatial resolution remote sensing imagery. Acta Ecologica Sinica, 2013, 33 (20): 6497- 6508.
doi: 10.5846/stxb201212211841 |
|
菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演. 生态学报, 2021, 41 (6): 2161- 2169. | |
Jian Y F, Han Z M, Huang G T, et al. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests. Acta Ecologica Sinica, 2021, 41 (6): 2161- 2169. | |
蒋馥根, 孙 华, 李成杰, 等. 联合GF-6和Sentinel-2红边波段的森林地上生物量反演. 生态学报, 2021, 41 (20): 8222- 8236. | |
Jiang F G, Sun H, Li C J, et al. Retrieving the forest aboveground biomass by combining the red edge bands of Sentinel-2 and GF-6. Acta Ecologica Sinica, 2021, 41 (20): 8222- 8236. | |
李 丹. 2018. 基于数字航空摄影数据的森林参数反演估测研究. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所). | |
Li D. 2018. Retrieval and estimation research of forest parameters based on digital aerial photograph data. Beijing: University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences. [in Chinese ] | |
李 旺, 牛 铮, 王 成, 等. 机载LiDAR数据估算样地和单木尺度森林地上生物量. 遥感学报, 2015, 19 (4): 669- 679. | |
Li W, Niu Z, Wang C, et al. Forest above-ground biomass estimation at plot and tree levels using airborne Li DAR data. Journal of Remote Sensing, 2015, 19 (4): 669- 679. | |
孙 钊, 谢运鸿, 王宝莹, 等. 基于无人机多维数据集的森林地上生物量估测模型研究. 农业机械学报, 2024, 55 (6): 186- 195,236.
doi: 10.6041/j.issn.1000-1298.2024.06.019 |
|
Sun Z, Xie Y H, Wang B Y, et al. Development of forest aboveground biomass estimation model based on multidimensional dataset of UAV. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (6): 186- 195,236.
doi: 10.6041/j.issn.1000-1298.2024.06.019 |
|
王 嫚. 2023. 基于贝叶斯方法和多源遥感的落叶松人工林多尺度地上生物量估算. 哈尔滨: 东北林业大学. | |
Wang M. 2023. The estimation of aboveground biomass of larix olgensis plantation based on Bayesian approach and multi-source remote sensing data. Harbin: Northeast Forestry University.[in Chinese] | |
武晓康. 2023. 基于UAV LiDAR的单木生物量反演研究. 桂林: 桂林理工大学. | |
Wu X K. 2023. Research on individual tree biomass extraction based on UAV LiDAR. Guilin: Guilin University of Technology. [ in Chinese]. | |
武晓康, 王浩宇, 冯宝坤, 等. 基于无人机LiDAR的单木生物量估测. 科学技术与工程, 2022, 22 (34): 15028- 15035.
doi: 10.3969/j.issn.1671-1815.2022.34.006 |
|
Wu X K, Wang H Y, Feng B K, et al. Individual tree biomass estimation based on UAV airborne LiDAR. Science Technology and Engineering, 2022, 22 (34): 15028- 15035.
doi: 10.3969/j.issn.1671-1815.2022.34.006 |
|
徐 婷, 曹 林, 申 鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算. 植物生态学报, 2015, 39 (4): 309- 321.
doi: 10.17521/cjpe.2015.0030 |
|
Xu T, Cao L, Shen X, et al. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data. Chinese Journal of Plant Ecology, 2015, 39 (4): 309- 321.
doi: 10.17521/cjpe.2015.0030 |
|
杨晓慧, 吴金卓, 刘浩然, 等. 基于UAV-LiDAR的人工林林分郁闭度估测. 林业科学, 2023, 59 (8): 12- 21.
doi: 10.11707/j.1001-7488.LYKX20210955 |
|
Yang X H, Wu J Z, Liu H R, et al. Estimation on canopy closure for plantation forests based on UAV-LiDAR. Scientia Silvae Sinicae, 2023, 59 (8): 12- 21.
doi: 10.11707/j.1001-7488.LYKX20210955 |
|
于海洋, 谢赛飞, 郭灵辉, 等. 融合光谱和空间特征的土壤重金属含量极端随机树估算. 农业机械学报, 2022, 53 (8): 231- 239. | |
Yu H Y, Xie S F, Guo L H, et al. Extremely randomized trees estimation of soil heavy metal content by fusing spectra and spatial features. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (8): 231- 239. | |
钟 浩. 2024. 联合无人机多源遥感数据单木生物量反演研究. 哈尔滨: 东北林业大学. | |
Zhong H. 2024. Study on biomass inversion of single tree from multi-source remote sensing data of UAV. Harbin: Northeast Forestry University. [in Chinese]. | |
周 榕. 2023. 机载与地基激光点云融合及林木参数提取研究. 长沙: 中南林业科技大学. | |
Zhou R. 2023. Study on fusion of airborne and ground-based laser point clouds and extraction of forest parameters. Changsha: Central South University of Forestry & Technology. [in Chinese]. | |
Dalla Corte A P, Souza D V, Rex F E, et al. Forest inventory with high-density UAV-lidar: machine learning approaches for predicting individual tree attributes. Computers and Electronics in Agriculture, 2020, 179, 105815.
doi: 10.1016/j.compag.2020.105815 |
|
Dalponte M, Frizzera L, Orka HO, et al. Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecological Indicators, 2018, 85, 367- 376.
doi: 10.1016/j.ecolind.2017.10.066 |
|
Jin S C, Su Y J, Gao S, et al. The transferability of random forest in canopy height estimation from multi-source remote sensing data. Remote Sensing, 2018, 10 (8): 1183.
doi: 10.3390/rs10081183 |
|
Juan-Ovejero R, Elghouat A, Navarro C J, et al. Estimation of aboveground biomass and carbon stocks of Quercus ilex L. saplings using UAV-derived RGB imagery. Annals of Forest Science, 2023, 80 (1): 44.
doi: 10.1186/s13595-023-01210-x |
|
Jucker T, Caspersen J, Chave J, et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, 23 (1): 177- 190.
doi: 10.1111/gcb.13388 |
|
Liang Y Y, Kou W L, Lai H Y, et al. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecological Indicators, 2022, 142, 109286.
doi: 10.1016/j.ecolind.2022.109286 |
|
Lin J Y, Chen D C, Wu W J, et al. Estimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds. Urban Forestry & Urban Greening, 2022, 69, 127521. | |
Liu Y, Lei P, You Q X, et al. Individual tree aboveground biomass estimation based on UAV stereo images in a Eucalyptus plantation. Forests, 2023, 14 (9): 1748.
doi: 10.3390/f14091748 |
|
Malek S, Miglietta F, Gobakken T, et al. Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques. IForest - Biogeosciences and Forestry, 2019, 12 (3): 323- 329.
doi: 10.3832/ifor2980-012 |
|
Mao Z H, Lu Z, Wu Y J, et al. 2023. DBH estimation for individual tree: two-dimensional images or three-dimensional point clouds? Remote Sensing, 15(16): 4116. | |
Sun Z, Wang Y F, Ding Z D, et al. Individual tree segmentation and biomass estimation based on UAV Digital aerial photograph. Journal of Mountain Science, 2023, 20 (3): 724- 737.
doi: 10.1007/s11629-022-7563-7 |
|
Tian Y C, Huang H, Zhou G Q, et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Science of the Total Environment, 2021, 781, 146816.
doi: 10.1016/j.scitotenv.2021.146816 |
|
Xu D D, Wang H B, Xu W X, et al. LiDAR applications to estimate forest biomass at individual tree scale: opportunities, challenges and future perspectives. Forests, 2021, 12 (5): 550.
doi: 10.3390/f12050550 |
|
Yan M, Xia Y H, Yang X Y, et al. Biomass estimation of subtropical arboreal forest at single tree scale based on feature fusion of airborne LiDAR data and aerial images. Sustainability, 2023, 15 (2): 1676.
doi: 10.3390/su15021676 |
[1] | Xiong Xiaoyan, Li Caixia, Chai Guoqi, Chen Long, Jia Xiang, Lei Lingting, Zhang Xiaoli. Estimation of Aboveground Biomass in Regional Forests by Using Integrating UAV-LiDAR and GEDI Data [J]. Scientia Silvae Sinicae, 2025, 61(8): 142-153. |
[2] | Zeyu Yuan,Hang Xu,Yi Ren,Yang Xu,Jianzhuang Pang,Xiaoyun Wu,Hanyao Zhang,Zhiqiang Zhang. Distribution Characteristics of Vegetation Resilience and its Driving Factors in the Three-North Shelterbelt Forest Program Region from 2001 to 2021 [J]. Scientia Silvae Sinicae, 2025, 61(7): 182-191. |
[3] | Feifei Yang,Wangfei Zhang,Lei Zhao,Han Zhao,Yongjie Ji,Mengjin Wang. Two-Stage Remote Sensing Feature Optimization and GF-1 Data-Supported Forest Above-Ground Biomass Inversion [J]. Scientia Silvae Sinicae, 2025, 61(4): 9-19. |
[4] | Xiaoning Ge,Xinqiao Xu,Huaiqing Zhang,Jing Zhang,Jie Yang,Zeyu Cui,Rurao Fu,Jinjie Liang,Tianhua Zou,Linlong Wang,Yang Liu. Progress and Reflection on Genotype-Environment Interaction Algorithms in Forest Tree Breeding [J]. Scientia Silvae Sinicae, 2025, 61(3): 1-15. |
[5] | Dan Pan,Luyi Luo,Kaiwen Ji,Fanbin Kong. Impact of Rural E-Commerce Development on Intra-Regional Income Gap and Shared Prosperity in Forested Areas [J]. Scientia Silvae Sinicae, 2024, 60(5): 35-50. |
[6] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[7] | Xiaohui Yang,Jinzhuo Wu,Haoran Liu,Hao Zhong,Wenshu Lin. Estimation on Canopy Closure for Plantation Forests Based on UAV-LiDAR [J]. Scientia Silvae Sinicae, 2023, 59(8): 12-21. |
[8] | Qiangying Jiao,Zongfu Han,Weiye Wang,Di Liu,Pengxu Pan,Bo Li,Nianci Zhang,Ping Wang,Jinhua Tao,Meng Fan. Driving Factors and Forecasting Model of Lightning-Caused Forest Fires in Daxing’ anling Mountains Based on Multi-Sources Data and Machine Learning Method [J]. Scientia Silvae Sinicae, 2023, 59(6): 74-87. |
[9] | Nannan Yang,Yan Bai,Suyi Jiang,Chunmei Yang,Kaihong Xu. Recognition Method of Plate and Wood Based on ALexNet Optimaization [J]. Scientia Silvae Sinicae, 2022, 58(3): 149-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||