Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (4): 16-30.doi: 10.11707/j.1001-7488.LYKX20220860
Previous Articles Next Articles
Yu Zhang1,Huaiqing Zhang2,Feng An3,Ling Jiang1,Ting Yun1,4,*
Received:
2022-12-05
Online:
2024-04-25
Published:
2024-05-23
Contact:
Ting Yun
CLC Number:
Yu Zhang,Huaiqing Zhang,Feng An,Ling Jiang,Ting Yun. A Quantitative Analysis Method of Solar Shortwave Radiation within Forest Canopy Based on a Computer Simulation Model[J]. Scientia Silvae Sinicae, 2024, 60(4): 16-30.
Table 1
The detailed information of the experimental trees and forest plot"
信息 Information | 虚拟树 Virtual trees | 真实树 Real trees | ||||
芒果树 Mango tree | 橡胶树 Rubber tree | 紫薇树 Crape myrtle tree | 樱花树 Cherry tree | 多株香樟树(其中1株) One of camphor tree plot | ||
树高 Height/m | 1.7 | 5.3 | 2.4 | 3.5 | 15.3 | |
冠幅(E-W/N-S)Crown diameter/m | 1.81/1.58 | 3.85/4.04 | 2.02/1.87 | 3.04/2.43 | 6.51/7.79 | |
基径 Basal diameter/cm | 7.67 | 11.47 | 4.11 | 9.98 | 22.86 | |
叶片数 Total number of leaves | 1 636 | 12 141 | 1 692 | 4 181 | 9 549 | |
叶片长度/叶片宽度 Leaves length/leaves width/cm | 15.25±9.30/ 3.52±1.72 | 8.89±3.85/ 3.37±1.23 | 5.03±1.43/ 2.73±0.88 | 6.73±1.18/ 2.92±0.90 | 12.63±3.63/ 7.17±2.67 | |
点云总数(叶片/枝干)Total number of cloud points (leaf/branch) | 74 016 (58 748/ 15 268) | 341 752 (278 090/ 63 662) | 243 222 (207 827/ 35 395) | 1 090 674 (914 379/ 176 295) | 8 049 295 (6 595 432/ 1 453 863) | |
冠积 Tree crown volume/m3 | 1.58 | 23.07 | 2.67 | 7.47 | 159.43 | |
总叶面积 Total leaf area of the tree crown/m2 | 7.38 | 25.13 | 1.89 | 7.31 | 64.92 | |
垂直投影面积 Vertical projection area/m2 | 2.12 | 11.33 | 1.77 | 5.49 | 29.49 | |
叶面积指数 LAI (leaf area index) | 3.48 | 2.22 | 1.07 | 1.33 | 2.21 |
Fig.1
BRDF and BTDF based on Monte Carlo method a. Illustration of the reflectance and transmittance of the incident solar ray in the whole sphere $ \mathit{\Omega} $. b. The reflectance lobe is derived from BRDF. After equally spaced sampling on the lobe surface, some points (blue) were randomly selected based on the importance sampling strategy to yield corresponding reflected light. c. The equivalent figure for realization of BTDF."
Fig.4
Polar plot shows the calculation results of BRDF$ f\mathrm{_r} $(the first row) and BTDF$ f\mathrm{_t} $(the second row) with varying incident light angles Roughness of leaf surface $ \alpha $ is assigned to 0.2 and refractive index $ \eta\mathrm{_t} $ is set to 1.5; the incident light (indicated by blue cross) is cast at 180° azimuth angle with zenith angle varying from 0° to 80° by 20° increment."
Fig.5
Paths of partial incident, reflected and transmitted sunlight propagation within the canopy Within the canopy of the mango tree ( left) and the cherry tree (right), partial direct light rays (red) are intercepted by triangular leaf facets, which results in reflected (blue) and transmitted light rays (green) in many random directions based on the Monte Carlo algorithm that continue to intersect with other leaves within the crowns."
Fig.6
The distribution of direct, reflected, and transmitted solar irradiance within the crowns of four experimental trees at a certain moment Lines 1 to 4 depict a mango tree, a rubber tree, a Crape myrtle tree, and a cherry tree, respectively. Columns one to three depict the distribution of direct, reflected, and transmitted solar radiation irradiance within the crowns of these four trees at 11:00 am on August 15, 2020."
Fig.8
Radiant fluxes of (a) mango tree, (b) rubber tree, (c) crape myrtle tree, (d) cherry tree and (e) a camphor tree plot on different dates and at different times of day The first, second and third columns represent the intercepted incident, reflected and transmitted radiant fluxes of each tree crown and a forest plot, respectively."
Table 2
Comparison for the radiant flux retrieval above and below canopy of each experimental tree at different time on 7 June 2020"
试验林木 Experimental tree | 项目 Item | 9时 (模拟/测量) 9:00 (Simulated/Measured) | 12时 (模拟/测量) 12:00 (Simulated/Measured) | 15时 (模拟/测量) 15:00 (Simulated/Measured) |
紫薇树 Crape myrtle tree | 树冠投影面积Tree crown projection area/m2 | 1.59 | 1.71 | 1.66 |
树冠上层辐射通量Upper canopy radiant flux/W | 998.06/ 1 068.28±55.74 | 1 578.14/ 1 514.76±74.08 | 1 115.82/ 1 206.42±62.13 | |
树冠下层辐射通量Sub-canopy radiant flux/W | 757.49/ 781.02±78.41 | 1 086.55/ 968.08±91.28 | 813.84/ 929.67±84.26 | |
拦截效率 Interception efficiency(%) | 24.53/26.89 | 32.12/36.09 | 27.06/22.94 | |
樱花树 Cherry tree | 树冠投影面积Tree crown projection area/m2 | 5.25 | 5.38 | 5.48 |
树冠上层辐射通量Upper canopy radiant flux/W | 3 295.48/ 3 471.61±160.14 | 4 965.15/ 5 021.69±232.01 | 3 683.55/ 3 889.77±164.29 | |
树冠下层辐射通量Sub-canopy radiant flux/W | 2 276.79/ 2 306.54±224.47 | 2 933.47/ 3 157.14±281.68 | 2 521.66/ 2 767.57±242.84 | |
拦截效率 Interception efficiency(%) | 30.91/33.56 | 40.92/37.13 | 31.54/28.85 | |
多棵香樟树 Camphor tree plot | 树冠投影面积Tree crown projection area/m2 | 175.03 | 194.58 | 186.98 |
树冠上层辐射通量Upper canopy radiant flux/W | 109 869.34/ 113 792.76±6 266.90 | 179 572.43/ 184 488.98±9 755.77 | 125 686.50/ 133 796.65±7 097.15 | |
树冠下层辐射通量Sub-canopy radiant flux/W | 64 975.07/ 62 278.78±3 191.32 | 80 165.73/ 91 543.43±4 661.51 | 71 380.12/ 71 634.73±3 931.39 | |
拦截效率 Interception efficiency(%) | 40.86/45.27 | 55.36/50.38 | 43.21/46.46 |
Table 3
The number of triangles contained in leaves and branches in different experimental tree crowns, the number of solar rays emitted over the scene, and the algorithm execution time"
试验树 Experimental tree | 三角面片数量 The number of triangles | 发射光线数量 The number of emitted solar rays | 加速前执行时间 The execution time before acceleration/min | 加速后执行时间 The execution time after acceleration/min | 轴对齐包围盒加速效率Acceleration efficiency employing strategy of axis-aligned bounding box(%) |
芒果树 Mango tree | 177 604 | 5.30×105 | 26.7 | 10.6 | 60.3 |
橡胶树 Rubber tree | 635 126 | 2.83×106 | 114.1 | 31.6 | 72.4 |
紫薇树 Crape myrtle tree | 54 785 | 4.43×105 | 16.8 | 7.3 | 56.6 |
樱花树 Cherry tree | 205 407 | 1.37×106 | 67.9 | 19.4 | 71.5 |
多株香樟树 Camphor tree plot | 5 492 884 | 2.61×107 | 845.8 | 276.2 | 67.4 |
卞尊健, 漆建波, 吴胜标, 等. 光学遥感三维计算机模拟模型的研究进展与应用. 遥感学报, 2021, 25 (2): 559- 576.
doi: 10.11834/jrs.20219274 |
|
Bian Z J, Qi J B, Wu S B, et al. A review on the development and application of three dimensional computer simulation mode of optical remote sensing. National Remote Sensing Bulletin, 2021, 25 (2): 559- 576.
doi: 10.11834/jrs.20219274 |
|
陈士杰, 张森林, 刘妹琴, 等. 基于改进Delaunay三角剖分的水下地形三维重建算法. 计算机科学, 2020, 47 (11): 137- 141.
doi: 10.11896/jsjkx.191100051 |
|
Chen S J, Zhang S L, Liu M Q, et al. Underwater terrain three-dimensional reconstruction algorithm based on improved delaunay triangulation. Computer Science, 2020, 47 (11): 137- 141.
doi: 10.11896/jsjkx.191100051 |
|
崔日鲜. 山东省太阳总辐射的时空变化特征分析. 自然资源学报, 2014, 29 (10): 1780- 1791.
doi: 10.11849/zrzyxb.2014.10.013 |
|
Cui R X. The analysis of spatiotemporal variation characteristics of global solar radiation in Shandong Province. Journal of Natural Resources, 2014, 29 (10): 1780- 1791.
doi: 10.11849/zrzyxb.2014.10.013 |
|
戴秋丹, 郭振海, 孙菽芬, 等. 安徽省淮南森林冠层辐射传输过程的特征. 大气科学, 2021, 45 (1): 205- 216.
doi: 10.3878/j.issn.1006-9895.2004.19251 |
|
Dai Q D, Guo Z H, Sun S F, et al. Characteristics of solar radiation and radiative transfer of a forest canopy in Huainan, Anhui Province. Chinese Journal of Atmospheric Sciences, 2021, 45 (1): 205- 216.
doi: 10.3878/j.issn.1006-9895.2004.19251 |
|
李茂月, 马康盛, 王 飞, 等. 基于结构光在机测量的叶片点云预处理方法研究. 仪器仪表学报, 2020, 41 (8): 55- 66. | |
Li M Y, Ma K S, Wang F, et al. Research on the preprocessing method of blade point cloud based on structured light on-machine measurement. Chinese Journal of Scientific Instrument, 2020, 41 (8): 55- 66. | |
闵启忠. 基于CSF的无人机影像数据点云滤波算法实现与应用. 北京测绘, 2021, 35 (6): 707- 711. | |
Min Q Z. Implementation and application of point cloud filtering algorithm for UAV image data based on CSF. Beijing Surveying and Mapping, 2021, 35 (6): 707- 711. | |
田 静, 杜灵通, 潘海珠, 等. 贺兰山油松林冠层的辐射能量截获及传输利用特征. 水土保持学报, 2023, 37 (1): 289- 295. | |
Tian J, Du L T, Pan H Z, et al. Characteristics of radiation interception, transmission and utilization in the canopy of Pinus tabulaeformis forest in Helan Mountain. Journal of Soil and Water Conservation, 2023, 37 (1): 289- 295. | |
王新云, 过志峰, 覃文汉, 等. 三维森林场景生成方法研究. 计算机工程与应用, 2010, 46 (32): 166- 167,176.
doi: 10.3778/j.issn.1002-8331.2010.32.046 |
|
Wang X Y, Guo Z F, Qin W H, et al. Research to generate 3-dimensional forest scenes. Computer Engineering and Applications, 2010, 46 (32): 166- 167,176.
doi: 10.3778/j.issn.1002-8331.2010.32.046 |
|
徐希孺, 范闻捷, 李举材, 等. 植被二向性反射统一模型. 中国科学:地球科学, 2017, 47 (2): 217- 232.
doi: 10.1360/N072016-00082 |
|
Xu X R, Fan W J, Li J C, et al. A unified model of bidirectional reflectance distribution function for the vegetation canopy. Scientia Sinica (Terrae), 2017, 47 (2): 217- 232.
doi: 10.1360/N072016-00082 |
|
于瑞云, 赵金龙, 余 龙, 等. 结合轴对齐包围盒和空间划分的碰撞检测算法. 中国图象图形学报, 2018, 23 (12): 1925- 1937.
doi: 10.11834/jig.180050 |
|
Yu R Y, Zhao J L, Yu L, et al. Collision detection algorithm based on AABB bounding box and space division. Journal of Image and Graphics, 2018, 23 (12): 1925- 1937.
doi: 10.11834/jig.180050 |
|
张树兵, 王建中. 基于L系统的植物建模方法改进. 中国图象图形学报, 2002, 7 (5): 457- 460.
doi: 10.3969/j.issn.1006-8961.2002.05.006 |
|
Zhang S B, Wang J Z. Improvement of plant structure modeling based on L-system. Journal of Image and Graphics, 2002, 7 (5): 457- 460.
doi: 10.3969/j.issn.1006-8961.2002.05.006 |
|
张徐洲, 杜朋朋, 何 勇, 等. 植物BRDF研究及应用进展. 光谱学与光谱分析, 2017, 37 (3): 829- 835. | |
Zhang X Z, Du P P, He Y, et al. Review of research and application for vegetation BRDF. Spectroscopy and Spectral Analysis, 2017, 37 (3): 829- 835. | |
Bailey B N, Overby M, Willemsen P, et al. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing. Agricultural and Forest Meteorology, 2014, 198/199, 192- 208.
doi: 10.1016/j.agrformet.2014.08.012 |
|
Bailey B N. A reverse ray-tracing method for modelling the net radiative flux in leaf-resolving plant canopy simulations. Ecological Modelling, 2018, 368, 233- 245.
doi: 10.1016/j.ecolmodel.2017.11.022 |
|
Bousquet L, Lachérade S, Jacquemoud S, et al. Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sensing of Environment, 2005, 98 (2/3): 201- 211. | |
Brelsford C C, Nybakken L, Kotilainen T K, et al. The influence of spectral composition on spring and autumn phenology in trees. Tree Physiology, 2019, 39 (6): 925- 950.
doi: 10.1093/treephys/tpz026 |
|
Brine D T, Iqbal M. Diffuse and global solar spectral irradiance under cloudless skies. Solar Energy, 1983, 30 (5): 447- 453.
doi: 10.1016/0038-092X(83)90115-9 |
|
Comar A, Baret F, Obein G, et al. ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface. Remote Sensing of Environment, 2014, 143, 112- 121.
doi: 10.1016/j.rse.2013.12.006 |
|
Combes D, Bousquet L, Jacquemoud S, et al. A new spectrogoniophotometer to measure leaf spectral and directional optical properties. Remote Sensing of Environment, 2007, 109 (1): 107- 117.
doi: 10.1016/j.rse.2006.12.007 |
|
Cook R L, Torrance K E. A reflectance model for computer graphics. ACM Transactions on Graphics, 1982, 1 (1): 7- 24.
doi: 10.1145/357290.357293 |
|
Fan W L, Chen J M, Ju W M, et al. GOST: a geometric-optical model for sloping terrains. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (9): 5469- 5482.
doi: 10.1109/TGRS.2013.2289852 |
|
Gastellu-Etchegorry J P, Yin T, Lauret N, et al. Simulation of satellite, airborne and terrestrial LiDAR with DART (I): waveform simulation with quasi-Monte Carlo ray tracing. Remote Sensing of Environment, 2016, 184, 418- 435.
doi: 10.1016/j.rse.2016.07.010 |
|
Geng J, Chen J M, Fan W L, et al. GOFP: a geometric-optical model for forest plantations. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (9): 5230- 5241.
doi: 10.1109/TGRS.2017.2704079 |
|
Heitz E. Understanding the masking-shadowing function in microfacet-based BRDFs. Journal of Computer Graphics Techniques, 2014, 3 (2): 32- 91. | |
Huang H G, Qin W H, Liu Q H. RAPID: a radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes. Remote Sensing of Environment, 2013, 132, 221- 237.
doi: 10.1016/j.rse.2013.01.013 |
|
Kambezidis H D. The solar resource. Comprehensive Renewable Energy, 2012, 3, 27- 84. | |
Kawaguchi A T, Nishida N K, Osamu I, et al. The variability and seasonality in the ratio of photosynthetically active radiation to solar radiation: a simple empirical model of the ratio. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 1- 14. | |
Montes R, Ureña C. 2012. An overview of BRDF models. University of Grenada, Technical Report LSI-2012-001. | |
Oshio H, Asawa T. Estimating the solar transmittance of urban trees using airborne LiDAR and radiative transfer simulation. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (9): 5483- 5492.
doi: 10.1109/TGRS.2016.2565699 |
|
Papaioannou G, Papanikolaou N, Retalis D. Relationships of photosynthetically active radiation and shortwave irradiance. Theoretical and Applied Climatology, 1993, 48 (1): 23- 27.
doi: 10.1007/BF00864910 |
|
Ponce de León M A, Bailey B N. Evaluating the use of Beer’s law for estimating light interception in canopy architectures with varying heterogeneity and anisotropy. Ecological Modelling, 2019, 406, 133- 143.
doi: 10.1016/j.ecolmodel.2019.04.010 |
|
Qi J B, Xie D H, Jiang J Y, et al. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters. Remote Sensing of Environment, 2022, 283, 113301.
doi: 10.1016/j.rse.2022.113301 |
|
Qi J B, Xie D H, Yin T G, et al. LESS: large-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sensing of Environment, 2019, 221, 695- 706.
doi: 10.1016/j.rse.2018.11.036 |
|
Roth B D, Saunders M G, Bachmann C M, et al. On leaf BRDF estimates and their fit to microfacet models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1761- 1771.
doi: 10.1109/JSTARS.2020.2988428 |
|
Shabanov N, Gastellu-Etchegorry J P. The stochastic Beer–Lambert–Bouguer law for discontinuous vegetation canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 214, 18- 32.
doi: 10.1016/j.jqsrt.2018.04.021 |
|
Shi H Y, Xiao Z Q. The 4SAILT model: an improved 4SAIL canopy radiative transfer model for sloping terrain. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (7): 5515- 5525.
doi: 10.1109/TGRS.2020.3022874 |
|
Sinoquet H, Pincebourde S, Adam B, et al. 3-D maps of tree canopy geometries at leaf scale. Ecology, 2009, 90 (1): 283.
doi: 10.1890/08-0179.1 |
|
Walter B, Marschner S R, Li H S, et al. 2007. Microfacet models for refraction through rough surfaces. Proceedings of the 18th Eurographics Conference on Rendering Techniques, Grenoble: France,ACM,195−206. | |
Wong L T, Chow W K. Solar radiation model. Applied Energy, 2001, 69 (3): 191- 224.
doi: 10.1016/S0306-2619(01)00012-5 |
|
Xue X B, Jin S C, An F, et al. Shortwave radiation calculation for forest plots using airborne LiDAR data and computer graphics. Plant Phenomics, 2022, 1, 1- 21. | |
Yun T, An F, Li W Z, et al. A novel approach for retrieving tree leaf area from ground-based LiDAR. Remote Sensing, 2016, 8 (11): 942.
doi: 10.3390/rs8110942 |
|
Yun T, Cao L, An F, et al. Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns. Agricultural and Forest Meteorology, 2019, 276, 1- 10. | |
Zhao F, Dai X, Verhoef W, et al. FluorWPS: a Monte Carlo ray-tracing model to compute Sun-induced chlorophyll fluorescence of three-dimensional canopy. Remote Sensing of Environment, 2016, 187, 385- 399.
doi: 10.1016/j.rse.2016.10.036 |
|
Zhu Y F, Li D N, Fan J C, et al. A reinterpretation of the gap fraction of tree crowns from the perspectives of computer graphics and porous media theory. Frontiers in Plant Science, 2023, 14, 1109443.
doi: 10.3389/fpls.2023.1109443 |
[1] | Shuai Yu,Tijiu Cai,Pide Zhang,Minglei Ren,Haiyu Zhang,Cunyong Ju. Scaling Effects of Edge Correction Methods on Spatial Structure Parameters [J]. Scientia Silvae Sinicae, 2023, 59(10): 57-65. |
[2] | Xiaohui Yang,Jinzhuo Wu,Haoran Liu,Hao Zhong,Wenshu Lin. Estimation on Canopy Closure for Plantation Forests Based on UAV-LiDAR [J]. Scientia Silvae Sinicae, 2023, 59(8): 12-21. |
[3] | Yancheng Qu,Yihang Jiang,Yanyan Jiang,Jianguo Zhang,Anli Luo,Xiongqing Zhang. Tree Leaf Biomass Models of Chinese fir Plantations Based on Sapwood Area and Diameter at Breast Height and Diameter at Crown Base [J]. Scientia Silvae Sinicae, 2023, 59(7): 106-114. |
[4] | Haotong Ma,Guangze Jin,Zhili Liu. Changes of Basal Area Growth of Pinus koraiensis with Tree Ages and Impact Factors in Xiaoxing’ anling Mountains, Northeast China [J]. Scientia Silvae Sinicae, 2023, 59(7): 96-105. |
[5] | Pei He,Junjie Wang,Shidong Xin,Zipeng Zhang,Lichun Jiang. Comparison of Four Methods on Modelling Stem Taper Function for Natural Pinus sylvestris var. mongolica and Larix gmelinii [J]. Scientia Silvae Sinicae, 2023, 59(6): 28-35. |
[6] | Weisheng Zeng,Ying Pu,Xueyun Yang,Shanjun Yi. Growth Models and Its Climate-Driven Analysis of Carbon Storage in Tree Layers of Five Major Plantation Types in China [J]. Scientia Silvae Sinicae, 2023, 59(3): 21-30. |
[7] | Xuzhan Guo,Qiao Chen,Xiaofang Zhang,Liang Hong,Yuanyuan You,Shouzheng Tang,Liyong Fu. Extraction of Healthy Canopy of New Afforestation for Pinus tabulaeformis Based on UAV High-Resolution Image [J]. Scientia Silvae Sinicae, 2022, 58(10): 111-120. |
[8] | Hongchao Huang,Dongbo Xie,Guangshuang Duan,Zhuang Zhang,Haijiang Zhang,Liyong Fu. Construction of Semiparametric Height Curve Model for Larch and Birch [J]. Scientia Silvae Sinicae, 2022, 58(10): 101-110. |
[9] | Xiaofang Zhang,Xuzhan Guo,Liang Hong,Tao Chen,Liyong Fu,Huiru Zhang. Comparison of Single Tree Crown Prediction Models of Larix principis-rupprechtii and Betula platyphylla in the Core Area of the Winter Olympics in China [J]. Scientia Silvae Sinicae, 2022, 58(10): 89-100. |
[10] | Xingjing Chen,Linyan Feng,Yuchao Zhang,Qingwang Liu,Zhaohui Yang,Liyong Fu,Jinhua Bai. Inversion of Aboveground Biomass in the Core Area of Chongli Winter Olympics Based on Airborne LiDAR [J]. Scientia Silvae Sinicae, 2022, 58(10): 35-46. |
[11] | Guangshuang Duan,Yali Zheng,Liang Hong,Xinyu Song,Liyong Fu. A Potential Productivity-Based Approach of Site Quality Evaluation for Larch Pure Forest and Birch-Aspen Mixed Forest [J]. Scientia Silvae Sinicae, 2022, 58(10): 1-9. |
[12] | Jianfeng Yao,Xuzhan Guo,Liyong Fu,Xuefeng Wang,Xiangdong Lei,Jun Lu,Yili Zheng,Xinyu Song. Indirect Measurement of Wood Density by Micro Drill Resistance Method [J]. Scientia Silvae Sinicae, 2022, 58(9): 138-147. |
[13] | Huifang Yao,Jie Lu,Jiaqin Zeng,Daqing Luo,Xinsheng Zhang,Chao Wang,Deshui Yu. Altitudinal Differences in Intraspecific and Interspecific Competition Index of Natural Forests of Quercus aquifolioides in Southeast Tibet [J]. Scientia Silvae Sinicae, 2022, 58(8): 53-62. |
[14] | Zipeng Zhang,Junjie Wang,Suoming Liu,Lichun Jiang. Effect of Form Quotient on Prediction Accuracy of Individual Tree Volume and Biomass of Betula platyphylla [J]. Scientia Silvae Sinicae, 2022, 58(5): 31-39. |
[15] | Guofei Zhang,Wanqiu Zhang,Cairong Yue. Forest Canopy Height Retrieval Based on TanDEM-X Data and Improved Three-Stage Inversion Algorithm [J]. Scientia Silvae Sinicae, 2022, 58(4): 152-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||