Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (4): 117-128.doi: 10.11707/j.1001-7488.LYKX20240311
• Research papers • Previous Articles Next Articles
Xia Liu1,2,Chengxing Ling1,2,*(),Yongfu Chen1,2,Hua Liu1,2,Zhenping He3,Zejiang Li4,Weina Sun4,Zhijie Ma3,Haixia You5,Wen Lü6,Feng Zhao1,2,Haowei Zeng1,2,Xinmiao Wang1,2
Received:
2024-05-28
Online:
2025-04-25
Published:
2025-04-21
Contact:
Chengxing Ling
E-mail:lingcx@ifrit.ac.cn
CLC Number:
Xia Liu,Chengxing Ling,Yongfu Chen,Hua Liu,Zhenping He,Zejiang Li,Weina Sun,Zhijie Ma,Haixia You,Wen Lü,Feng Zhao,Haowei Zeng,Xinmiao Wang. Additive Biomass Models and Carbon Content of Thirteen Typical Shrubs in Erdos Region[J]. Scientia Silvae Sinicae, 2025, 61(4): 117-128.
Table 1
Basic characteristics of the fourteen sampling plots"
样区编号 Plot code | 面积 Area/km2 | 经度 Longitude (E)/(°) | 纬度 Latitude (N)/(°) | 海拔Altitude/m | 覆盖度 Coverage degree | 样区内主要灌木 Main shrubs in the sample plot |
1 | 1 | 109.54 | 39.27 | 1 402 | 0.681 | 柠条、沙柳、沙蒿、杨柴 C. korshinskii,S. psammophila,A. desertorum,C. fruticosum var. mongolicum |
2 | 1 | 108.85 | 39.53 | 1 476 | 0.278 | 沙蒿、柠条A. desertorum,C. korshinskii |
3 | 1 | 108.92 | 39.54 | 1 469 | 0.063 | 柠条C. korshinskii |
4 | 1 | 108.77 | 39.30 | 1 371 | 0.210 | 沙蒿、杨柴、沙柳 A. desertorum,C. fruticosum var. mongolicum,S. psammophila |
5 | 1 | 108.75 | 39.29 | 1 389 | 0.360 | 柠条、沙柳、沙蒿、杨柴C. korshinskii,S. psammophila,A. desertorum, C. fruticosum var. mongolicum |
6 | 1 | 109.02 | 39.78 | 1 502 | 0.154 | 沙柳、沙蒿 S. psammophila,A. desertorum |
7 | 1 | 109.54 | 40.42 | 1 037 | 0.259 | 沙棘、柠条H. rhamnoides,C. korshinskii |
8 | 1 | 106.88 | 40.08 | 1 140 | 0.083 | 四合木、沙冬青、霸王T. mongolica,A. mongolicus,S. xanthoxylon |
9 | 1 | 106.90 | 40.08 | 1 166 | 0.064 | 霸王、沙冬青、白刺、四合木 S. xanthoxylon,A. mongolicus,N. tangutorum,T. mongolica |
10 | 1 | 106.91 | 40.07 | 1 185 | 0.039 | 红砂、四合木、霸王、沙冬青、白刺R. soongarica,T. mongolica, S. xanthoxylon,A. mongolicus,N. tangutorum |
11 | 1 | 106.92 | 40.06 | 1 196 | 0.047 | 红砂、四合木R. soongarica,T. mongolica |
12 | 1 | 107.29 | 40.50 | 1 041 | 0.585 | 沙蒿、柽柳A. desertorum,T. chinensis |
13 | 1 | 107.28 | 40.50 | 1 080 | 0.073 | 梭梭、沙蒿、柠条H. ammodendron,A. desertorum, C. korshinskii |
14 | 1 | 109.30 | 38.98 | 1 313 | 0.712 | 沙地柏S. valgaris |
Table 2
Basic information of the thirteen shrub species"
物种 Shrub species | 样株数量 Samples number | 灌木高度 Shrub height/m | 冠幅面积 Crown area/m2 | 各组分生物量 Biomass of each component of shrub/g | |||
茎干 Stem | 枝叶 Branch and leaves | 根系 Root | 灌木生物量 Shrub biomass | ||||
霸王 S. xanthoxylon | 69 | 0.39~1.57 | 0.21~6.51 | — | 63~5 214 | 130~12 665 | 214~17 879 |
白刺 N. tangutorum | 50 | 0.2~0.9 | 0.21~58.02 | — | 52~637 | 132~11 281 | 198~16 918 |
柽柳 T. chinensis | 51 | 0.85~3.58 | 0.19~17.87 | 16~10 848 | 46~26 898 | 66~34 704 | 128~67 584 |
红砂 R. songarica | 51 | 0.17~0.68 | 0.20~1.48 | — | 48~831 | 21~721 | 69~1 553 |
沙地柏 S. vulgaris | 42 | 0.38~1.25 | 1.90~3.75 | — | 3 367~15 166 | 635~6 438 | 5 729~19 903 |
沙冬青 A. mongolicus | 63 | 0.28~1.21 | 0.06~6.42 | — | 28~4 288 | 35~2 997 | 102~7 286 |
沙蒿 A. desertorum | 89 | 0.33~1.06 | 0.10~4.15 | — | 13~1 400 | 4~910 | 17~2 310 |
沙棘 H. rhamnoides | 50 | 0.67~2.32 | 0.12~4.15 | 19~1 598 | 79~4 183 | 21~1 209 | 139~6 831 |
沙柳 S. psammophila | 71 | 0.98~3.11 | 0.19~16 | 21~4 109 | 19~16 379 | 26~11 559 | 127~32 048 |
四合木 T. mongolica | 86 | 0.24~0.75 | 0.14~3.43 | — | 108~4 960 | 48~1 674 | 230~6 458 |
梭梭 H. ammodendron | 61 | 0.56~2.85 | 0.18~4.26 | 44~1 103 | 71~2 686 | 45~1 719 | 160~5 255 |
柠条 C. korshinskii | 148 | 0.23~4.35 | 0.05~23.41 | 48~5 362 | 31~8 530 | 22~6 116 | 102~16 632 |
杨柴C. fruticosum var. mongolicum | 38 | 0.52~1.65 | 0.12~4.12 | — | 11~1 031 | 3~206 | 14~1 237 |
Table 3
Form of biomass equation for the thirteen shrub species"
方程编号 Equation code | 方程类型 Equation types | 方程形式 Equations form | 方程编号 Equation code | 方程类型 Equation types | 方程形式 Equations form | |
Eq.3 | 线性函数Linear function | Eq.10 | 幂函数Power function | |||
Eq.4 | 线性函数Linear function | Eq.11 | 幂函数Power function | |||
Eq.5 | 线性函数Linear function | Eq.12 | 幂函数Power function | |||
Eq.6 | 对数函数Logarithmic function | Eq.13 | Schumacher理论生长方程 Schumacher theoretical growth equation | |||
Eq.7 | 对数函数Logarithmic function | Eq.14 | Schumacher理论生长方程 Schumacher theoretical growth equation | |||
Eq.8 | 对数函数Logarithmic function | Eq.15 | Schumacher理论生长方程 Schumacher theoretical growth equation | |||
Eq.9 | 幂函数Power function |
Fig.1
Correlation relationship between different components biomass of thirteen shrubs species and various measurement variables In the figure, darker color shades and larger circle areas represent higher correlation coefficients. *, **, and *** denote significance at the 0.05, 0.01, and 0.001 levels, respectively."
Table 4
Biomass models and 10-fold cross-validation accuracy evaluation results for different components of thirteen shrub species"
物种 Shrub species | 组分 Components | 模型形式 Equation form | 系数 Coefficients | 验证精度指标 Validation accuracy indicators | |||||||
a | b | c | AIC | BIC | R2 | RMSE | NMSE | ||||
霸王 S. xanthoxylon | 枝叶Branch and leaf | 865.771 | 0.825 | 0.647 | 843.30 | 851.74 | 0.95 | 231.04 | 0.05 | ||
根系Root | 1 059.800 | 1.221 | 0.369 | 886.38 | 894.83 | 0.98 | 366.33 | 0.02 | |||
整株All parts | — | — | — | — | — | 0.98 | 543.88 | 0.03 | |||
白刺 N. tangutorum | 枝叶Branch and leaf | 250.808 | 0.812 | 0.259 | 576.09 | 583.04 | 0.93 | 326.13 | 0.07 | ||
根系Root | 483.331 | 0.814 | 0.222 | 630.33 | 637.28 | 0.94 | 605.77 | 0.06 | |||
整株All parts | — | — | — | — | — | 0.94 | 927.08 | 0.06 | |||
柽柳 T. chinensis | 茎干 Stem | 89.542 | 0.793 | 1.928 | 708.83 | 715.88 | 0.84 | 809.35 | 0.16 | ||
枝叶Branch and leaf | 516.548 | 0.928 | — | 779.73 | 785.01 | 0.84 | 2 084.71 | 0.19 | |||
根系Root | 388.23 | 0.766 | 1.857 | 776.25 | 783.29 | 0.92 | 2 183.81 | 0.10 | |||
整株All parts | — | — | — | — | — | 0.92 | 4 251.54 | 0.10 | |||
红砂 R. songarica | 枝叶Branch and leaf | 956.821 | 0.940 | 0.862 | 475.19 | 482.24 | 0.90 | 60.18 | 0.11 | ||
根系Root | 195.328 | 1.152 | — | 471.46 | 476.75 | 0.73 | 34.71 | 0.27 | |||
整株All parts | — | — | — | — | — | 0.88 | 87.19 | 0.13 | |||
沙地柏 S. vulgaris | 枝叶Branch and leaf | 2 843.858 | 1.207 | 0.718 | 611.06 | 617.40 | 0.69 | 1 343.74 | 0.32 | ||
根系Root | 2 331.357 | 0.643 | — | 560.61 | 565.36 | 0.44 | 668.35 | 0.58 | |||
整株All parts | — | — | — | — | — | 0.70 | 1 693.73 | 0.31 | |||
沙冬青 A. mongolicus | 枝叶Branch and leaf | 1 167.344 | 0.747 | — | 701.17 | 707.19 | 0.98 | 149.84 | 0.02 | ||
根系Root | 795.728 | 0.771 | — | 723.97 | 729.99 | 0.95 | 177.83 | 0.06 | |||
整株All parts | — | — | — | — | — | 0.98 | 230.21 | 0.02 | |||
沙蒿 A. desertorum | 枝叶Branch and leaf | 382.890 | 0.904 | — | 965.46 | 972.49 | 0.82 | 133.07 | 0.19 | ||
根系Root | 248.060 | 0.783 | — | 919.23 | 926.27 | 0.71 | 106.73 | 0.30 | |||
整株All parts | — | — | — | — | — | 0.85 | 188.70 | 0.15 | |||
沙棘 H. rhamnoides | 茎干 Stem | 114.748 | 1.149 | — | 562.74 | 567.95 | 0.77 | 204.41 | 0.25 | ||
枝叶Branch and leaf | 401.915 | 0.975 | — | 600.69 | 605.90 | 0.89 | 335.46 | 0.12 | |||
根系Root | 194.627 | 0.631 | — | 547.13 | 552.34 | 0.75 | 136.70 | 0.26 | |||
整株All parts | — | — | — | — | — | 0.88 | 561.27 | 0.12 | |||
沙柳 S. psammophila | 茎干 Stem | 6.431 | 1.656 | — | 946.33 | 952.76 | 0.72 | 488.83 | 0.34 | ||
枝叶Branch and leaf | 31.266 | 0.600 | — | 1 127.68 | 1 134.11 | 0.80 | 1 594.45 | 0.22 | |||
根系Root | 40.485 | 1.449 | — | 1 079.72 | 1 086.15 | 0.84 | 1 011.48 | 0.17 | |||
整株All parts | — | — | — | — | — | 0.83 | 2 870.21 | 0.19 | |||
四合木 T. mongolica | 枝叶Branch and leaf | 2 851.685 | 0.857 | — | 1 047.25 | 1 054.16 | 0.92 | 288.54 | 0.08 | ||
根系Root | 928.884 | 0.578 | — | 966.60 | 973.51 | 0.76 | 144.13 | 0.24 | |||
整株All parts | — | — | — | — | — | 0.90 | 406.70 | 0.10 | |||
梭梭 H. ammodendron | 茎干 Stem | 229.545 | 0.330 | 1.120 | 612.70 | 620.58 | 0.90 | 65.82 | 0.11 | ||
枝叶Branch and leaf | 509.570 | 0.460 | 1.140 | 722.54 | 730.42 | 0.85 | 228.13 | 0.15 | |||
根系Root | 311.040 | 0.520 | 1.150 | 661.80 | 669.68 | 0.89 | 127.15 | 0.11 | |||
整株All parts | — | — | — | — | — | 0.89 | 390.92 | 0.11 | |||
柠条 C. korshinskii | 茎干 Stem | 645.658 | 0.443 | — | 2 045.58 | 2 054.23 | 0.57 | 445.51 | 0.43 | ||
枝叶Branch and leaf | 456.444 | 0.503 | — | 2 111.22 | 2 119.87 | 0.69 | 278.59 | 0.33 | |||
根系Root | 339.742 | 0.534 | — | 2 033.75 | 2 042.40 | 0.76 | 195.46 | 0.26 | |||
整株All parts | — | — | — | — | — | 0.70 | 843.99 | 0.32 | |||
杨柴 C. fruticosum var. mongolicum | 枝叶Branch and leaf | 157.261 | 0.897 | — | 459.23 | 463.81 | 0.68 | 129.95 | 0.38 | ||
根系Root | 53.242 | 0.694 | — | 362.94 | 367.52 | 0.66 | 33.15 | 0.36 | |||
整株All parts | — | — | — | — | — | 0.71 | 149.15 | 0.34 |
Table 5
Carbon content in different components of thirteen shrub species(mean ± SD)"
物种 Shrub species | 各组分含碳率 Carbon content of each component (%) | 根冠比 Root-shoot ratio | 加权平均含碳率 Weighted average carbon content (%) | ||
茎干 Stem | 枝叶Branch and leaf | 根系 Root | |||
霸王 Sarcozygium xanthoxylon | — | 44.31±4.21Aa | 41.25±6.12ABCa | 1.80±0.38 | 42.37 |
白刺 Nitraria tangutorum | — | 41.29±5.63Aa | 42.03±5.01ABCa | 2.26±1.98 | 41.78 |
柽柳 Tamarix chinensis | 43.72±12.24Aa | 28.86±6.51Bb | 36.03±10.10BCab | 1.07±0.15 | 34.68 |
红砂 Reaumuria songarica | — | 38.49±3.04ABa | 41.59±2.97ABCa | 0.43±0.13 | 39.40 |
沙地柏 Sabina vulgaris | — | 37.98±8.87ABa | 32.96±5.35Ca | 0.45±0.10 | 36.37 |
沙冬青 Ammopiptanthus mongolicus | — | 42.74±10.21Aa | 41.34±6.03ABCa | 0.92±0.74 | 42.12 |
沙蒿 Artemisia desertorum | — | 40.52±8.08Aa | 34.55±11.05BCa | 0.83±0.79 | 38.05 |
沙棘 Hippophae rhamnoides | 33.57±16.39Aa | 37.76±4.86ABa | 46.97±11.67Aa | 0.22±0.09 | 38.41 |
沙柳 Salix psammophila | 42.56±11.16Aa | 38.88±9.88Aa | 38.62±9.87ABCa | 0.61±0.20 | 39.49 |
四合木 Tetraena mongolica | — | 37.19±9.96ABa | 32.49±7.11Ca | 0.55±0.22 | 35.59 |
梭梭 Haloxylon ammodendron | 35.58±2.61Aa | 43.41±5.58ABb | 43.85±6.71ABa | 0.41±0.06 | 39.80 |
柠条 Caragana korshinskii | 41.20±11.13Aa | 36.87±9.76ABa | 33.00±7.59Ca | 0.32±0.15 | 37.91 |
杨柴 Corethrodendron fruticosum var. mongolicum | — | 39.10±9.04Aa | 36.35±9.73BCa | 0.40±0.30 | 38.38 |
蔡会德, 卢 峰, 徐占勇, 等. 桉树相容性可加性立木生物量模型系统研建. 林业资源管理, 2023, (1): 87- 93. | |
Cai H D, Lu F, Xu Z Y, et al. Research and development of compatible and additive individual tree biomass model systems for Eucalyptus. Forest Resources Management, 2023, (1): 87- 93. | |
曹 磊, 李海奎. 两种相容性生物量模型的比较: 以广东省3个阔叶树种为例. 生态学杂志, 2019, 38 (6): 1916- 1925. | |
Cao L, Li H K. Comparison of two compatible biomass models: a case study from three broadleaved tree species in Guangdong. Chinese Journal of Ecology, 2019, 38 (6): 1916- 1925. | |
党晓宏, 高 永, 蒙仲举, 等. 西鄂尔多斯地区5种天然荒漠优势灌丛含碳率的研究. 中南林业科技大学学报, 2017a, 37 (5): 74- 79. | |
Dang X H, Gao Y, Meng Z J, et al. Carbon content rates analysis of five natural desert shrub species in west Erdos region. Journal of Central South University of Forestry & Technology, 2017a, 37 (5): 74- 79. | |
党晓宏, 高 永, 蒙仲举, 等. 西鄂尔多斯地区5种荒漠优势灌丛生物量分配格局及预测模型. 中国沙漠, 2017b, 37 (1): 100- 108.
doi: 10.7522/j.issn.1000-694X.2015.00201 |
|
Dang X H, Gao Y, Meng Z J, et al. Biomass allocation patterns and estimation model of five desert shrub species in west Erdos region. Journal of Desert Research, 2017b, 37 (1): 100- 108.
doi: 10.7522/j.issn.1000-694X.2015.00201 |
|
国家林业和草原局. 2024. 中华人民共和国国家标准(GB/T 43648—2024): 主要树种立木生物量模型与碳计量参数. 北京: 中国标准出版社. | |
(National Forestry and Grassland Administration. 2024. National standard of the People’s Republic of China GB/T 43648—2024: main tree biomass models and related parameters to carbon accounting. Beijing: China Standards Press. [in Chinese]). | |
郭玉东, 张秋良, 陈晓燕, 等. 库布齐沙漠地区人工灌木林生物量模型构建. 西北农林科技大学学报(自然科学版), 2022, 50 (4): 74- 82. | |
Guo Y D, Zhang Q L, Chen X Y, et al. Establishment of biomass models for artificial shrubbery in the Kubuqi Desert Area. Journal of Northwest A& F University (Natural Science Edition), 2022, 50 (4): 74- 82. | |
黄金廷, 侯光才, 陶正平, 等. 鄂尔多斯高原植被生态分区及其水文地质意义. 地质通报, 2008, (8): 1330- 1334.
doi: 10.3969/j.issn.1671-2552.2008.08.032 |
|
Huang J T, Hou G C, Tao Z P, et al. Vegetation ecological areas of the Erdos Plateau, China and their hydrogeological significance. Geological Bulletin of China, 2008, (8): 1330- 1334.
doi: 10.3969/j.issn.1671-2552.2008.08.032 |
|
金 铭, 李 毅, 王顺利, 等. 祁连山高山灌丛生物量及其分配特征. 干旱区地理, 2012, 35 (6): 952- 959. | |
Jin M, Li Y, Wang S L, et al. Alpine shrub biomass and allocation characteristics in Qilian Mountains. Arid Land Geography, 2012, 35 (6): 952- 959. | |
李文博, 谢龙飞, 董利虎. 考虑样地效应的人工杨树立木可加性生物量模型构建. 生态学杂志, 2024, 43 (8): 2513- 2522. | |
Li W B, Xie L F, Dong L H. Construction of additive biomass model of planted poplar trees considering plot effect. Chinese Journal of Ecology, 2024, 43 (8): 2513- 2522. | |
马 苏, 刘军会, 康玉麟, 等. 鄂尔多斯市防风固沙功能时空变化及驱动因素分析. 环境科学研究, 2022, 35 (11): 2477- 2485. | |
Ma S, Liu J H, Kang Y L, et al. Spatio-temporal changes of sand-fixing function and its driving factors in the Erdos. Research of Environmental Sciences, 2022, 35 (11): 2477- 2485. | |
童新风, 杨红玲, 宁志英, 等. 科尔沁沙地优势固沙灌木的生物量预测模型. 中国沙漠, 2018, 38 (3): 553- 559.
doi: 10.7522/j.issn.1000-694X.2018.00033 |
|
Tong X F, Yang H L, Ning Z Y, et al. Biomass estimation models for dominant saan-fixing shrubs in Horqin Sand Land. Journal of Desert Research, 2018, 38 (3): 553- 559.
doi: 10.7522/j.issn.1000-694X.2018.00033 |
|
吴举扬, 朱 江, 艾训儒, 等. 亚热带常绿落叶阔叶混交林木本植物生物量模型Meta分析. 中南林业科技大学学报, 2023, 43 (4): 111- 122. | |
Wu J Y, Zhu J, Ai X R, et al. Meta-analysis of woody plant biomass model of subtropical evergreen deciduous broadleaf mixed forests. Journal of Central South University of Forestry & Technology, 2023, 43 (4): 111- 122. | |
谢宗强, 王 杨, 唐志尧, 等. 2018. 中国常见灌木生物量模型手册. 北京: 科学出版社. | |
Xie Z Q, Wang Y, Tang Z Y, et al. 2018. Manual of biomass models for common shrubs in China. Beijing: Science Press. [in Chinese] | |
姚雪玲, 姜丽娜, 李 龙, 等. 浑善达克沙地6种灌木生物量模拟. 生态学报, 2019, 39 (3): 905- 912. | |
Yao X L, Jiang L N, Li L, et al. Biomass simulation of six shrub species in Otindag sandy land. Acta Ecologica Sinica, 2019, 39 (3): 905- 912. | |
曾伟生. 加权回归估计中不同权函数的对比分析. 林业资源管理, 2013, (5): 55- 61.
doi: 10.3969/j.issn.1002-6622.2013.05.011 |
|
Zeng W S. Comparison of different weight functions in weighted regression. Forest Resources Management, 2013, (5): 55- 61.
doi: 10.3969/j.issn.1002-6622.2013.05.011 |
|
曾伟生. 国内外灌木生物量模型研究综述. 世界林业研究, 2015, 28 (1): 31- 36. | |
Zeng W S. A review of studies of shrub biomass modeling. World Forestry Research, 2015, 28 (1): 31- 36. | |
赵梦颖, 孙 威, 罗永开, 等. 内蒙古26种常见温带灌木的生物量模型. 干旱区研究, 2019, 36 (5): 1219- 1228. | |
Zhao M Y, Sun W, Luo Y K, et al. Models for estimating the biomass of 26 temperate shrub species in Inner Mongolia, China. Arid Zone Research, 2019, 36 (5): 1219- 1228. | |
赵一之. 1992. 内蒙古珍惜濒危植物图谱. 北京: 中国农业科技出版社. | |
Zhao Y Z. 1992. Endangered plant atlas of Inner Mongolia. Beijing: China Agricultural Technology Press. [in Chinese] | |
钟泽兵, 周国英, 杨路存, 等. 柴达木盆地几种荒漠灌丛植被的生物量分配格局. 中国沙漠, 2014, 34 (4): 1042- 1048.
doi: 10.7522/j.issn.1000-694X.2013.00406 |
|
Zhong Z B, Zhou G Y, Yang L C, et al. The biomass allocation patterns of desert shrub vegetation in the Qaidam Basin, Qinghai, China. Journal of Desert Research, 2014, 34 (4): 1042- 1048.
doi: 10.7522/j.issn.1000-694X.2013.00406 |
|
Ali A, Xu M, Zhao Y T, et al. Allometric biomass equations for shrub and small tree species in Subtropical China. Silva Fennica, 2015, 49 (4): 1275. | |
Conti G, Gorne L D, Zeballos S R, et al. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Global Ecology and Biogeography, 2019, 28 (7): 961- 975.
doi: 10.1111/geb.12907 |
|
Doraisami M, Kish R, Paroshy N J, et al. A global database of woody tissue carbon concentrations. Scientific Data, 2022, 9 (1): 284.
doi: 10.1038/s41597-022-01396-1 |
|
Estornell J, Ruiz L A, Velázquez-Martí B, et al. Estimation of shrub biomass by airborne lidar data in small forest stands. Forest Ecology and Management, 2011, 262 (9): 1697- 1703.
doi: 10.1016/j.foreco.2011.07.026 |
|
Heanes D L. Determination of total organic-C (carbon) in soils by an improved chromic acid digestion and spectrophotometric procedure (soil analysis). Communications in Soil Science and Plant Analysis, 1984, 15 (10): 1191- 1213.
doi: 10.1080/00103628409367551 |
|
Luo Y J, Wang X K, Ouyang Z Y, et al. A review of biomass equations for Chinaʼs tree species. Earth System Science Data, 2020, 12 (1): 21- 40.
doi: 10.5194/essd-12-21-2020 |
|
Ma S H, He F, Tian D, et al. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences, 2018, 15 (3): 693- 702.
doi: 10.5194/bg-15-693-2018 |
|
Poulter B, Frank D, Ciais P, et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 2014, 509 (7502): 600- 603.
doi: 10.1038/nature13376 |
|
Rodrigues D P, Hamacher C, Estrada G C D, et al. Variability of carbon content in mangrove species: effect of species, compartments and tidal frequency. Aquatic Botany, 2015, 120, 346- 351.
doi: 10.1016/j.aquabot.2014.10.004 |
|
Saatchi S S, Harris N L, Brown S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 2011, 108 (24): 9899- 9904.
doi: 10.1073/pnas.1019576108 |
|
Thomas S C, Martin A R. Carbon content of tree tissues: a synthesis. Forests, 2012, 3 (2): 332- 352.
doi: 10.3390/f3020332 |
|
Wang Y, Xu W T, Tang Z Y, et al. A biomass equation dataset for common shrub species in China. Earth System Science Data Discussions, 2021, 2021, 1- 18. | |
Yue J W, Guan J H, Deng L, et al. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in Northwest China. Life and Environment, 2018, 6, e4859. | |
Zeng H Q, Liu Q J, Feng Z W, et al. Biomass equations for four shrub species in Subtropical China. Journal of Forest Research, 2010, 15 (2): 83- 90.
doi: 10.1007/s10310-009-0150-8 |
[1] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[2] | Xinsheng Han,Guangquan Liu,Hao Xu,Liguo Dong,Yongzhong Guo,Yu An,Haixia Wan,Yueling Wang. Spatial Variation and Scale Effect of Surface Soil Organic Carbon Content on Typical Slopes in the Loess Region, Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(1): 19-31. |
[3] | Yang Tao, Qiu Yongbin, Shen Han, Zheng Chengzhong, Zhang Zhen, Wang Wenyue, Jin Guoqing, Zhou Zhichun. Early Evaluation of Carbon Content of Cypress Clones and Families and Selection of Superior Strains [J]. Scientia Silvae Sinicae, 2023, 59(9): 85-94. |
[4] | Xue Dong, Yonghua Li, Zhiming Xin, Ruibing Duan, bin Yao, Yanfeng Bao, Zhengguo Zhang, Yuan Liu. Patterns of Altitudinal Distribution of Species Diversity of Desert Gobi Shrub Communities in West Hexi Corridor of China [J]. Scientia Silvae Sinicae, 2021, 57(2): 168-178. |
[5] | Yanan Zhao,Yafeng Zhao,Hongmei Wang,Yanping Ma,Zhili Li. Response of Spatial Heterogeneity and Threshold Value for Soil Water and Aboveground Biomass of Desert Grassland-Shrubland Anthropogenic Transition in Desert Steppe of Ningxia, China [J]. Scientia Silvae Sinicae, 2021, 57(12): 1-12. |
[6] | Tao Sun,Zhiqing Jia,Hujun Liu,Wen Shang,Jiang Liu,Liheng Zhang. Spatial Pattern of Points Distribution of Sandpiles of Nitraria tangutorum Nebkhas at Different Developmental Stages in Desert-Oasis Ecotone of Minqin [J]. Scientia Silvae Sinicae, 2020, 56(7): 12-21. |
[7] | Yadong Xue,Diqiang Li,Jia Li. Habitat Selection and Migration Pattern of Wild Bactrian Camel (Camelus ferus) in the Kumtag Desert, China Based on Satellite Tracking and Positioning Technology [J]. Scientia Silvae Sinicae, 2020, 56(10): 192-198. |
[8] | Zhuang Yilin, Zhou Jinxing, Wu Xiuqin, Cao Jianhua, Zhang Weixin. Vegetation Change and It's Driving Forces in Karst Faulted Basins between 2001 and 2016 [J]. Scientia Silvae Sinicae, 2019, 55(9): 177-184. |
[9] | Xiao He,Yuancai Lei,Chunquan Xue,Qihu Xu,Haikui Li,Lei Cao. Carbon Density Uncertainty Estimates for Schima superba in Guangdong Province [J]. Scientia Silvae Sinicae, 2019, 55(11): 163-171. |
[10] | Liu Peng, Jia Xin, Yang Qiang, Zha Tianshan, Wang Ben, Ma Jingyong. Characterization of Soil Respiration in a Shrubland Ecosystem of Artemisia ordosica in Mu Us Desert [J]. Scientia Silvae Sinicae, 2018, 54(5): 10-17. |
[11] | Wen Amin, Zheng Jianghua, Chen Meng, Mu Chen, Ma Tao. Monitoring Mouse-Hole Density by Rhombomys opimus in Desert Forests with UAV Remote Sensing Technology [J]. Scientia Silvae Sinicae, 2018, 54(4): 186-192. |
[12] | Zheng Jing, She Weiwei, Bai Yuxuan, Zhang Yuqing, Qin Shugao, Wu Bin. Effects of Nitrogen and Water Addition on Leaf Traits of Dominant Plant Species in Artemisia Ordosica Community of the Mu Us Desert [J]. Scientia Silvae Sinicae, 2018, 54(10): 164-171. |
[13] | Liu Fang, Hao Yuguang, Xin Zhiming, Xu Jun, Huang Yaru, Zhao Yingming, Sun Fei. Characteristics of Soil Wind Erosion under Different Underlying Surface Conditions in Ulanbuh Desert [J]. Scientia Silvae Sinicae, 2017, 53(3): 128-137. |
[14] | Huang Heqing, Chu Hongjun, Cao Jie, Bu Lan, Hu Defu, Zhang Dong, Li Kai. Distribution of Gasterophilus (Diptera, Gasterophilidae) Myiasis Foci in Arid Desert Steppe:A Case Study of Kalamaili Mountain Ungulate Nature Reserve [J]. Scientia Silvae Sinicae, 2017, 53(11): 142-149. |
[15] | He Ji, Wu Bo, Bao Fang, Li Jiazhu, Yao Bin, Ye Jingyun, Liu Jiankang, Xin Zhiming. Effects of Simulated Rain Addition on Biomass Allocation of Nitraria tangutorum in Ulanbuh Desert [J]. Scientia Silvae Sinicae, 2016, 52(5): 81-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||