Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 47-56.doi: 10.11707/j.1001-7488.LYKX20240002
• Research papers • Previous Articles Next Articles
Fengqing Li(),Suzhen Liu,Guisheng Luo,Yuling Zou,Wei Huang,Mansheng Zeng*(
)
Received:
2024-01-02
Online:
2025-01-25
Published:
2025-02-09
Contact:
Mansheng Zeng
E-mail:lfqnjfu@163.com;zmsheng222@163.com
CLC Number:
Fengqing Li,Suzhen Liu,Guisheng Luo,Yuling Zou,Wei Huang,Mansheng Zeng. Analysis of Bacterial Community Structure and Diversity in Rhizosphere Soil of Monochasma savatieri in Different Habitats[J]. Scientia Silvae Sinicae, 2025, 61(1): 47-56.
Table 1
Information of experimental soil samples"
生境 Habitat | 林分类型 Stand type | 采集地 Site | 样本名称Name | 样本 Sample | 经纬度 Longitude and latitude | 经营类型 Management type |
野生 Wild | 油茶 C. oleifera | 江西信丰 Xinfeng,Jiangxi | XF | 根际土 Rhizosphere soil | 114.96°E, 25.09°N | 粗放经营,即连续5年未 进行经营管理 Extensive management, that is, no operation for 5 consecutive years |
马尾松 P. massoniana | 江西安福 Anfu,Jiangxi | AF | 根际土 Rhizosphere soil | 114.18°E, 27.82°N | 轻度经营,即每年施肥、 抚育各1次Light management, that is, fertilization and tending once a year | |
栀子 G. jasminoides | 江西分宜 Fenyi,Jiangxi | FY | 根际土 Rhizosphere soil | 114.76°E, 27.86°N | 强度经营,即每年修枝、 施肥2~3次Intensity management, that is, pruning and fertilizing 2–3 times a year | |
人工仿野生 栽培 Artificial bionic cultivation | 针阔混交 Coniferous-broad leaved mixed stand | 江西宜春 Yichun,Jiangxi | YC | 根际土 Rhizosphere soil | 114.44°E, 27.84°N | 重度经营,全垦,全年除草、 施肥4~5次Heavy management, full reclamation, weeding and fertilization 4–5 times a year |
Table 2
Physicochemical properties of rhizosphere soil of Monochasma savatieri"
生境 Habitat | 林分类型 Stand type | pH | 全量养分含量 Content of total nutrient/(g·kg?1) | 速效养分含量 Content of available nutrient/(mg·kg?1) | ||||||
有机质 Organic matter | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Alkali-hydrolyzable nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | ||||
野生 Wild | 油茶 C. oleifera | 5.24±0.15a | 28.41±1.39b | 1.04±0.08c | 0.38±0.04a | 21.02±1.10a | 151.13±4.56a | 2.58±0.27a | 62.66±3.37a | |
马尾松 P. massoniana | 4.68±0.08b | 41.36±7.43a | 1.64±0.13ab | 0.27±0.01b | 12.46±0.49d | 106.18±20.37b | 0.46±0.10c | 73.36±5.35a | ||
栀子 G. jasminoides | 4.51±0.36b | 47.64±6.72a | 1.53±0.19b | 0.32±0.07b | 13.73±1.04c | 126.71±24.18ab | 1.79±0.73b | 54.88±8.93a | ||
人工仿生栽培 Artificial bionic cultivation | 针阔混交 Coniferous-broad leaved mixed stand | 4.48±0.06b | 39.82±7.09a | 2.10±0.17a | 0.25±0.02b | 17.32±0.70b | 103.33±11.44b | 0.74±0.06c | 67.83±8.97a |
Table 3
Alpha diversity indexes of soil bacterial communities of M. savatieri in different habitats"
生境 Habitat | 林分类型 Stand type | 丰富度指数 Richness index (Chao 1) | 香农-维纳指数 Shannon-Wiener’s index | 物种数 Observed species |
野生 Wild | 马尾松P. massoniana | 8.53±0.27a | ||
栀子G. jasminoides | 8.81±0.25a | |||
油茶C. oleifera | 8.22±0.51a | |||
人工仿生栽培 Artificial bionic cultivation | 针阔混交 Coniferous-broad leaved mixed stand | 8.86±0.84a |
Table 5
Relative abundance of bacterial communities in different habitat at the genus level"
属 Genus | 相对丰度 Relative abundance(%) | |||
AF | FY | XF | YC | |
伯克霍尔德氏菌-卡巴拉氏菌- 拟伯克霍尔德氏菌属 Burkholderia-Caballeronia-Paraburkholderia | 1.73 | 2.22 | 1.07 | 7.43 |
慢生根瘤菌属 Bradyrhizobium | 2.32 | 3.49 | 1.78 | 2.91 |
红游动菌属 Rhodoplanes | 1.72 | 1.69 | 1.08 | 1.01 |
鞘脂单胞菌属Sphingomonas | 0.62 | 0.67 | 0.32 | 1.69 |
念珠菌固体杆菌属Candidatus_Solibacter | 2.70 | 2.50 | 1.57 | 2.88 |
uncultured bacterium | 6.20 | 5.60 | 4.08 | 2.08 |
苔藓杆菌属 Bryobacter | 1.69 | 2.06 | 2.09 | 1.25 |
Occallatibacter | 1.01 | 1.12 | 2.23 | 1.93 |
酸杆菌属 Acidibacter | 1.23 | 2.20 | 1.47 | 0.62 |
粒状胞菌属 Granulicella | 0.62 | 0.61 | 0.46 | 1.65 |
Mucilaginibacter | 0.12 | 0.12 | 0.09 | 1.39 |
嗜酸栖热菌属 Acidothermus | 7.84 | 9.50 | 10.18 | 0.24 |
丛毛单胞菌属 Conexibacter | 1.82 | 1.98 | 2.55 | 0.37 |
FCPS473 | 5.23 | 1.23 | 8.05 | 0.04 |
Feb-21 | 3.36 | 0.23 | 2.54 | 0.01 |
uncultured_forest_soil_bacterium | 1.85 | 1.85 | 2.97 | 0.65 |
未培养酸杆菌门菌属 uncultured_Acidobacteria_bacterium | 1.81 | 1.20 | 1.02 | 0.72 |
HSB OF53-F07 | 1.09 | 0.45 | 4.81 | 0.05 |
嗜盐囊菌属 Haliangium | 0.41 | 0.53 | 0.18 | 1.36 |
Table 6
Redundancy analysis (RDA) results of relationship between physicochemical properties and rhizosphere soil bacterial of M. savatieri"
RDA 分析解释参数 Interpretation parameter of RDA | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | 第4轴 Axis 4 |
特征值 Eigen values | ||||
物种-环境关系累积 百分比方差 Cumulative percentage variance of species-environment relation | 76.18 | 88.59 | 94.6 | 98.03 |
典范特征值总和 Sum of all canonical eigen values | 0.051 | |||
蒙特卡洛检验 Monte Carlo permutation test | ||||
第1典范轴 P 值 Significance of first canonical axis | P<0.01 | |||
所有典范轴 P 值 Significance of all canonical axis | P<0.01 |
陈 冉, 刘志强, 王丹丹. 基于高通量测序比较不同产地药用银杏根际土壤微生物多样性. 药用生物技术, 2021, 28 (2): 117- 122. | |
Chen R, Liu Z Q, Wang D D. Microbial diversity of rhizosphere soil of Ginkgo biloba from different habitats was compared based on high-throughput sequencing. Pharmaceutical Biotechnology, 2021, 28 (2): 117- 122. | |
丁新景, 敬如岩, 黄雅丽, 等. 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 2017, 54 (5): 1293- 1298. | |
Ding X J, Jing R Y, Huang Y L, et al. Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacia forests in Yellow River Delta. Acta Pedologica Sinica, 2017, 54 (5): 1293- 1298. | |
丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的 4 种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 2018, 54 (1): 81- 89. | |
Ding X J, Jing R Y, Huang Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing. Scientia Silvae Sinicae, 2018, 54 (1): 81- 89. | |
郭兰萍, 周良云, 康传志, 等. 药用植物适应环境胁迫的策略及道地药材“拟境栽培”. 中国中药杂志, 2020, 45 (9): 1969- 1974. | |
Guo L P, Zhou L Y, Kang C Z, et al. Strategies for medicinal plants adapting environmental stress and “simulative habitat cultivation” of Dao-di herbs. China Journal of Chinese Materia Medica, 2020, 45 (9): 1969- 1974. | |
郭子武, 杨丽婷, 林 华, 等. 坡位对毛竹林下黄花远志生物量积累与分配及其异速生长关系的影响. 南京林业大学学报(自然科学版), 2020, 44 (6): 79- 84. | |
Guo Z W, Yang L T, Lin H, et al. Effects of slope positions on growth and biomass accumulation, allocation and allometry of Polygala fallax in Phyllostachys edulis forest. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44 (6): 79- 84. | |
胡蒙爱, 马嘉伟, 张雪艳. 生物炭引入蚯蚓粪和草炭对基质环境, 黄瓜植株生长和果实品质特性的影响. 江西农业大学学报, 2022, 44 (4): 852- 861. | |
Hu M A, Ma J W, Zhang X Y. Effects of introducing biochar into vermicompost and peat on substrate environment, cucumber growth and quality characteristics. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44 (4): 852- 861. | |
李 毳, 刘 怡, 刘晋仙. 药用植物根际细菌群落多样性驱动因素分析. 生态环境学报, 2020, 29 (10): 1988- 1993. | |
Li C, Liu Y, Liu J X. Analysis of driving factors of rhizosphere bacterial community diversity in three genuine medicine plants. Ecology and Environmental Sciences, 2020, 29 (10): 1988- 1993. | |
李 岩, 何学敏, 杨晓东, 等. 不同生境黑果枸杞根际与非根际土壤微生物群落多样性. 生态学报, 2018, 38 (17): 5983- 5995. | |
Li Y, He X M, Yang X D, et al. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats. Acta Ecologica Sinica, 2018, 38 (17): 5983- 5995. | |
蔺玉红, 马嘉伟, 张雪艳. 蚯蚓粪, 草炭与生物炭混合对基质理化性质和细菌群落组成、代谢的影响. 中国农业大学学报, 2022, 27 (7): 84- 94. | |
Lin Y H, Ma J W, Zhang X Y. Effects of peat or vermicompost mixed with biochar on the physical and chemical properties of the substrate and composition and metabolism of bacterial communities. Journal of China Agricultural University, 2022, 27 (7): 84- 94. | |
罗夫来, 郭巧生, 王长林, 等. 寄主对半寄生植物百蕊草影响的综合评价研究. 中国中药杂志, 2012, 37 (9): 1174- 1179. | |
Luo F L, Guo Q S, Wang C L, et al. Complex evaluation for influence of hosts on hemipatasite Thesium chinense. China Journal of Chinese Materia Medica, 2012, 37 (9): 1174- 1179. | |
裴怀弟, 宿兵兵, 李 琦, 等. 人参果生育期根际土壤细菌结构对施氮量的响应. 植物营养与肥料学报, 2023, 29 (6): 1125- 1134. | |
Pei H D, Su B B, Li Q, et al. Response of rhizosphere bacterial community structure to nitrogen application rate during ginseng fruit (Solanum muricatum Aiton) growth stages. Journal of Plant Nutrition and Fertilizers, 2023, 29 (6): 1125- 1134. | |
孙 倩, 吴宏亮, 陈 阜, 等. 基于高通量测序的几种不同作物根际土壤细菌群落结构和多样性分析. 农业生物技术学报, 2020, 28 (8): 1490- 1498. | |
Sun Q, Wu H L, Chen F, et al. Analysis of bacterial community structure and diversity in rhizosphere soil of several different crops based on high-throughput sequencing. Journal of Agricultural Biotechnology, 2020, 28 (8): 1490- 1498. | |
施咏滔, 朱再标, 郭巧生, 等. 人为干扰对野生沙氏鹿茸草群落结构的影响. 中药材, 2022, 45 (03): 561- 567. | |
Shi Y T, Zhu Z B, Guo Q S, et al. effects of human disturbance on the population structure of wild Monochasma savatieri. Journal of Chinese Medicinal Materials, 2022, 45 (03): 561- 567. | |
王豪吉, 官会林, 王 勇, 等. 2023. 自然林下与田间根腐三七根际微生物群落特征及比较分析. 微生物学通报, 50(5): 1988−2001. | |
Wang H J, Guan H L, Wang Y et al, 2023. Comparison of rhizosphere microbial community of Panax notoginseng with root rot under natural forest and in the field. Microbiology China. 50(5): 1988−2001. [in Chinese] | |
王 雪, 接伟光, 蔡柏岩. 不同生境黄檗 AM 真菌菌群结构分析. 林业科学, 2012, 48 (9): 99- 107.
doi: 10.11707/j.1001-7488.20120916 |
|
Wang X, Jie W G, Cai B Y. Community composition of the AM fungi of Phellodendron amurense in different habitats. Scientia Silvae Sinicae, 2012, 48 (9): 99- 107.
doi: 10.11707/j.1001-7488.20120916 |
|
王 艳, 郭良栋, 程虎印, 等. 不同生境重楼内生真菌及土壤真菌多样性比较. 微生物学通报, 2020, 47 (9): 2867- 2876. | |
Wang Y, Guo L D, Cheng H Y, et al. Comparison of endophytic and soil fungi of Paris Polyphylla diversity from different habitat. Microbiology China, 2020, 47 (9): 2867- 2876. | |
王 钰, 谭 均, 伍晓丽, 等. 自然林和人工搭棚种植模式下黄连根际土壤真菌群落结构变化. 中国中药杂志, 2020, 45 (21): 5160- 5168. | |
Wang Y, Tan J, Wu X L, et al. Variation in fungal community structures in rhizosphere soil of Coptis chinensis with cropping mode under natural forest and artificial shed. China Journal of Chinese Materia Medica, 2020, 45 (21): 5160- 5168. | |
辛晓静, 刘 磊, 申俊芳, 等. 羊草基因型数目与氮添加对土壤微生物群落的交互影响. 生态学报, 2016, 36 (13): 3923- 3932. | |
Xin X J, Liu L, Shen J F, et al. Interactions between genotypic number and nitrogen addition on soil microbial communities in the population of Leymus chinensis. Acta Ecologica Sinica, 2016, 36 (13): 3923- 3932. | |
薛银刚, 刘 菲, 周璐璐, 等. 基于高通量测序的工业园区地下水和土壤细菌群落结构比较研究. 生态毒理学报, 2017, 12 (6): 107- 115. | |
Xue Y G, Liu F, Zhou L L, et al. Comparison study of bacterial community structure between groundwater and soil in industrial park based on high throughput sequencing. Asian Journal of Ecotoxicology, 2017, 12 (6): 107- 115. | |
杨尚东, 郭 霜, 任奎喻, 等. 甘蔗宿根矮化病感病与非感病株根际土壤生物学性状及细菌群落结构特征. 植物营养与肥料学报, 2019, 25 (6): 910- 916. | |
Yang S D, Guo S, Ren K Y, et al. Soil biological properties and bacterial community structures in rhizosphere soil of canes infected and non-infected by ratoon stunting disease. Journal of Plant Nutrition and Fertilizers, 2019, 25 (6): 910- 916. | |
杨泽良, 任建行, 况园园, 等. 桂西北喀斯特不同植被演替阶段土壤微生物群落多样性. 水土保持研究, 2019, 26 (3): 185- 191. | |
Yang Z L, Ren J H, Kuang Y Y, et al. Dynamics of soil microbial communities along vegetation restoration gradient in Karst area. Research of Soil and Water Conservation, 2019, 26 (3): 185- 191. | |
张 香, 高佳琪, 袁 媛, 等. 基于Hiseq测序分析沉香不同层的细菌分布特征. 中国中药杂志, 2020, 45 (10): 2374- 2381. | |
Zhang X, Gao J Q, Yuan Y, et al. Analysis of bacteria distribution characteristics in different layers of agarwood based on Hiseq sequencing. China Journal of Chinese Materia Medica, 2020, 45 (10): 2374- 2381. | |
赵芸晨, 刘 畅, 闫 刚, 等. 连续施用猪粪对辣椒根际有益细菌与产量的影响. 蔬菜, 2023, (9): 34- 40. | |
Zhao Y C, Liu C, Yan G, et al. Effects of continuous application of pig manure on rhizosphere beneficial bacteria and yield of pepper. Vegetables, 2023, (9): 34- 40. | |
周倩怡, 李 屹, 韩 睿, 等. 根际促生菌缓解园艺作物连作障碍的研究进展. 生态学杂志, 2022, 41 (9): 1845- 1852. | |
Zhou Q Y, Li Y, Han R, et al. Research progress of using plant growth promoting rhizobacteria to alleviate continuous cropping obstacles of horticultural crops. Chinese Journal of Ecology, 2022, 41 (9): 1845- 1852. | |
Begum N, Qin C, Ahanger M A, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 2019, 10, 1068.
doi: 10.3389/fpls.2019.01068 |
|
de Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368 (6488): 270- 274.
doi: 10.1126/science.aaz5192 |
|
Hooper D U, Bignell D E, Brown V K, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience, 2000, 50 (12): 1049.
doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 |
|
Huang W J, Long C L, Lam E. Roles of plant-associated microbiota in traditional herbal medicine. Trends in Plant Science, 2018, 23 (7): 559- 562.
doi: 10.1016/j.tplants.2018.05.003 |
|
Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356 (6343): 1172- 1175.
doi: 10.1126/science.aam9970 |
|
Kurth F, Zeitler K, Feldhahn L, et al. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology, 2013, 13 (1): 205.
doi: 10.1186/1471-2180-13-205 |
|
Li Y C, Li Z, Li Z W, et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L. ) continuous cropping soil by high‐throughput pyrosequencing approach. Journal of Applied Microbiology, 2016, 121 (3): 787- 799.
doi: 10.1111/jam.13225 |
|
Liu Y L, He W J, Mo L, et al. Antimicrobial, anti-inflammatory activities and toxicology of phenylethanoid glycosides from Monochasma savatieri Franch. ex Maxim. Journal of Ethnopharmacology, 2013, 149 (2): 431- 437.
doi: 10.1016/j.jep.2013.06.042 |
|
Luan F G, Zhang L L, Lou Y Y, et al. Analysis of microbial diversity and niche in rhizosphere soil of healthy and diseased cotton at the flowering stage in southern Xinjiang. Genetics and Molecular Research, 2015, 14 (1): 1602- 1611.
doi: 10.4238/2015.March.6.7 |
|
Mateos-Rivera A, Yde J C, Wilson B, et al. The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiology Ecology, 2016, 92 (4): 1- 13. | |
Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 2011, 6 (2): e17000.
doi: 10.1371/journal.pone.0017000 |
|
Nemat H, Ali Shah A, Akram W, et al. Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation, 2020, 22 (13): 1396- 1407.
doi: 10.1080/15226514.2020.1780412 |
|
Pendergast T H IV, Burke D J, Carson W P. Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytologist, 2013, 197 (4): 1300- 1310.
doi: 10.1111/nph.12105 |
|
Rodríguez-Blanco A, Sicardi M, Frioni L. Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L. ). Biology and Fertility of Soils, 2015, 51 (3): 391- 402.
doi: 10.1007/s00374-014-0986-8 |
|
Shi S J, Nuccio E, Herman D J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio, 2015, 6 (4): 1- 8.. | |
Stewart A J, Chapman W, Jenkins G I, et al. 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell & Environment, 24(11): 1189−1197. | |
Su J M, Wang Y Y, Bai M, et al. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi’. Microbiome, 2023, 11 (1): 61.
doi: 10.1186/s40168-023-01504-2 |
|
Uroz S, Ioannidis P, Lengelle J, et al. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One, 2013, 8 (2): e55929.
doi: 10.1371/journal.pone.0055929 |
|
Yang Y, He J, Liu Y X, et al. Assessment of Chinese suitable habitats of Zanthoxylum nitidum in different climatic conditions by Maxent model, HPLC, and chemometric methods. Industrial Crops and Products, 2023, 196, 116515.
doi: 10.1016/j.indcrop.2023.116515 |
|
Yuan Y L, Si G C, Wang J, et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiology Ecology, 2014, 87 (1): 121- 132.
doi: 10.1111/1574-6941.12197 |
|
Zhang M H, Chen Y L, Ouyang Y, et al. The biology and haustorial anatomy of semi-parasitic Monochasma savatieri Franch. ex Maxim. Plant Growth Regulation, 2015, 75 (2): 473- 481.
doi: 10.1007/s10725-014-0010-1 |
|
Zhang Y Y, Chen Y L, Zhang X H, et al. Adventitious shoot induction from internode and root explants in a semiparasitic herb Monochasma savatieri franch ex maxim. Journal of Plant Growth Regulation, 2017, 36 (3): 799- 804.
doi: 10.1007/s00344-017-9681-y |
|
Zhou Y, Yang Z, Liu J, et al. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nature Communications, 2023, 14 (1): 8126.
doi: 10.1038/s41467-023-43926-4 |
[1] | Huan Xiao, Baiketuerhan Yeerjiang,Chunyu Zhang,Xiuhai Zhao. Relationship between Forest Layer Community Structure and Productivity of Broad-Leaved Korean Pine Forest in Changbai Mountain [J]. Scientia Silvae Sinicae, 2024, 60(3): 57-64. |
[2] | Xiangrong Liu,Qiwu Sun,Lingyu Hou,Zhongyi Pang,Yanlin Zhang,Changjun Ding. The Differences in Soil Microbial Community Structure and Functional Diversity among Poplar Plantations at Different Ages in the Songliao Plain [J]. Scientia Silvae Sinicae, 2024, 60(11): 25-36. |
[3] | Xian Xie,Xun Deng,Liwen Song,Jun Liang. Endophytic Fungal Diversity in the Needles and Shoots Infected with Dieback of Larix olgensis [J]. Scientia Silvae Sinicae, 2024, 60(10): 76-85. |
[4] | Zhi Li,Xiaoyan Xue,Zhen Liu,Qifei Cai,Xiaodong Geng,Jian Feng,Huina Zhou,Tao Zhang,Mingwan Li,Yanmei Wang. Analysis of Bacterial Community Structure, Diversity and Functional Prediction in Different Organs of Healthy and Diseased Idesia polycarpa Plants [J]. Scientia Silvae Sinicae, 2022, 58(8): 136-148. |
[5] | Bin Li,Hongxiang Shi,Lanlan Liu,Pu Yang,Xin Zhang,Hang Chen,Ying Feng,Xiaoming Chen. Characteristics of Community Structure and Functional Group of Fungi in Leaf, Stem, Root and Rhizosphere Soil of Ligustrum lucidum [J]. Scientia Silvae Sinicae, 2022, 58(5): 102-112. |
[6] | Wei Cong,Jingjing Yu,Haimang Yu,Yi Ding,Yuguang Zhang. Diversity and Community Assembly of Forest Soil Microorganisms in Different Climatic Zones [J]. Scientia Silvae Sinicae, 2022, 58(2): 70-79. |
[7] | Yongzhong Chen,Caixia Liu,Yanming Xu,Zhen Zhang,Yinghe Peng,Longsheng Chen,Yirong Su,Rui Wang,Wei Tang. Effects of Herbage Inter-Planting on Structure and Stability of Soil Microbial Community in Camellia oleifera Plantations [J]. Scientia Silvae Sinicae, 2022, 58(11): 61-70. |
[8] | Jing Cheng,Haixiang Wang,Wanyi Xue,Caiping Deng. Adaptation of Flower-Visiting Insects to Biological Characteristics of Jujube Flowers in Heterogeneous Habitats [J]. Scientia Silvae Sinicae, 2021, 57(8): 121-132. |
[9] | Pengyu Zhao,Xue Bai,Pingmei Yan,Xiaodong Zhao,Xiaoying Wu,Baofeng Chai. Responses of Soil Bacterial Community Structure and Phenotype to Soil Heterogeneity in Larix principis-rupprechtii Forest [J]. Scientia Silvae Sinicae, 2021, 57(7): 101-110. |
[10] | Rongrong Pang,Jieying Peng,Yan Yan. Factors Influencing Aboveground Biomass in the Secondary Forest of Quercus aliena var. acutiserrata in Taibai Mountain [J]. Scientia Silvae Sinicae, 2021, 57(10): 157-165. |
[11] | Xian Xie, Jun Liang, Yanpeng Zhu, Ruirui Hu, Yuan Cheng, Xingyao Zhang. Diversity and Community Structure of Endophytic Fungi in the Pure Forest of Pinus densiflora Infected by Different Incidences of Sphaeropsis sapinea [J]. Scientia Silvae Sinicae, 2020, 56(9): 51-57. |
[12] | Changlin Liu,Guoying Zhou,Bai Xiao,Jun Liu. Diversity of Endophytic Fungi in Heartwood and Sapwood of Dalbergia odorifera [J]. Scientia Silvae Sinicae, 2020, 56(4): 109-120. |
[13] | Cheng Wang,Wei Ran,Zhaohui Yang,Xing Bi,Haijun Su,Canshi Hu,Lei Shi,Mingming Zhang. Habitats Selection and Spatial Distribution of Main Pheasants in Fanjingshan Reserve during Breeding Period [J]. Scientia Silvae Sinicae, 2020, 56(11): 134-142. |
[14] | Cao Hongyu, Gao Guanglei, Ding Guodong, Zhang Ying, Zhao Yuanyuan, Ren Yue, Chen Yuxuan, Guo Mishan. Community Structure and Diversity of Soil Fungi in Four Habitats in Hulun Buir Sandy Land [J]. Scientia Silvae Sinicae, 2019, 55(8): 118-127. |
[15] | Chen Jinlei, Fang Xi, Gu Xiang, Li Leida, Liu Zhaodan, Wang Liufang, Zhang Shiji. Composition, Structure, and Floristic Characteristics of Two Forest Communities in the Central-Subtropical China [J]. Scientia Silvae Sinicae, 2019, 55(2): 159-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||