Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (10): 12-20.doi: 10.11707/j.1001-7488.LYKX20220855
• Research papers •
Xiao Li1(),Shuxian Jia1,Yingqing Xi1,Liuming Yang1,2,Xiaofei Liu1,2,*(
)
Received:
2022-12-02
Online:
2024-10-25
Published:
2024-11-05
Contact:
Xiaofei Liu
E-mail:li991004@163.com;xfliu@fjnu.edu.cn
CLC Number:
Xiao Li,Shuxian Jia,Yingqing Xi,Liuming Yang,Xiaofei Liu. Effects of Litter Addition and Removal on Soil Microbial Necromass Carbon in a Natural Forest of Castanopsis carlesii[J]. Scientia Silvae Sinicae, 2024, 60(10): 12-20.
Table 1
Basic soil physical and chemical properties of 0-10 cm soil layer of study plots"
样地 Plot | 有机碳储量 Organic carbon storage/(t·hm?2) | 土壤密度 Soil bulk density/(g·cm?3) | 全氮含量 Total nitrogen content/(mg·g?1) | 全磷含量 Total phosphorus content/(mg·g?1) |
对照 Control | 43.89±4.46 | 1.09±0.11 | 2.34±0.56 | 0.48±0.12 |
去除凋落物 Litter removal | 35.47±1.57 | 0.91±0.11 | 2.11±0.55 | 0.46±0.09 |
添加凋落物 Litter addition | 40.24±3.70 | 0.93±0.09 | 2.23±0.37 | 0.51±0.12 |
Table 2
Phospholipid fatty acid biomarkers"
微生物 Microbial | 磷脂脂肪酸标记物 Phospholipid fatty acid biomarkers |
革兰氏阳性细菌 Gram-positive bacteria | i14:i15:0, a15:i16:i17:0, a17:0 |
革兰氏阴性细菌 Gram-negative bacteria | 16:1ω9c, 16:1ω7c, cy17:0,18:1ω7c, 18:1ω5c, cy19:0 |
真菌 Fungi | 18:1ω9c, 18:2ω6c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1ω5c |
放线菌Actinomyces | 10Me16:0, 10Me17:0, 10Me18:0 |
Table 3
Effects of different litter treatments on soil physicochemical properties"
处理 Treatment | 对照 Control | 去除凋落物 Litter removal | 添加凋落物 Litter addition |
含水量Soil water content(%) | 0.27±0.02a | 0.22±0.00b | 0.24±0.01ab |
pH | 4.19±0.17 | 4.34±0.03 | 4.30±0.01 |
土壤有机碳含量Soil organic carbon content/(g·kg?1) | 24.98±2.60 | 21.21±0.80 | 22.84±2.7 |
全氮含量Total nitrogen content/(g·kg?1) | 1.67±0.18 | 1.38±0.09 | 1.46±0.10 |
碳氮比Carbon to nitrogen ratio | 14.94±0.09 | 15.40±0.47 | 15.56±0.82 |
可溶性有机碳含量Dissolved organic carbon content/(mg·kg?1) | 124.20±13.78a | 67.39±0.98b | 117.05±3.94a |
可溶性有机氮含量Dissolved organic nitrogen content/ (mg·kg?1) | 9.61±0.58a | 4.85±1.67b | 4.21±0.57b |
微生物生物量碳含量Microbial biomass carbon content/(mg·kg-1) | 440.50±45.44a | 313.62±32.41b | 437.89±39.05a |
铵态氮含量NH4+-N content/(mg·kg?1) | 26.70±6.42 | 18.74±3.15 | 22.23±3.32 |
硝态氮含量NO3?-N content/(mg·kg?1) | 4.80±0.29b | 5.85±0.30a | 2.85±0.50c |
Table 4
Effects of different litter treatments on microbial community structure"
处理 Treatment | 对照 Control | 去除凋落物 Litter removal | 添加凋落物 Litter addition |
革兰氏阳性菌Gram-positive bacteria/(nmol·g?1) | 6.55±0.15a | 4.58±0.82b | 5.09±0.54ab |
革兰氏阴性菌Gram-negative bacteria/(nmol·g?1) | 6.12±0.21a | 4.52±0.68b | 5.53±0.47ab |
革兰氏阳性菌与革兰氏阴性菌比 Gram-positive bacteria/Gram-negative bacteria | 1.07±0.01 | 0.90±0.13 | 0.92±0.02 |
真菌Fungi/(nmol·g?1) | 2.74±0.27a | 1.81±0.30b | 2.53±0.27a |
真菌与细菌比Fungi/Bacteria | 0.22±0.03 | 0.21±0.02 | 0.24±0.00 |
丛枝真菌Arbuscular mycorrhizal fungi/(nmol·g?1) | 0.40±0.01a | 0.21±0.07b | 0.30±0.01b |
放线菌Actinomyces/(nmol·g?1) | 3.06±0.57 | 2.11±0.50 | 2.39±0.39 |
总微生物生物量Total-PLFAs/(nmol·g?1) | 18.88±0.74a | 12.73±2.39b | 15.84±1.55ab |
Fig.3
Pathway analyses of the factors affecting microbial necromass carbon contents with different litter Red lines represent negative paths, blue lines represent positive paths and the width of lines indicates the effect size. The values along the lines represent the standardised path coefficients, R2 values represent the size of the explanatory variables. * denotes P<0.05. SWC: Soil water content;MBC: Microbial biomass carbon content;GN: Gram-negative bacteria biomass; Fungi: Fungi biomass;AMF: Arbuscular mycorrhizal fungi biomass; ACT: Actinomycetes biomass."
Fig.4
Correlation analysis of soil amino sugars with microbial community composition and soil properties GP: Gram-positive bacterial biomass; GN: Gram-negative bacterial biomass; Fungi: Fungal biomass; F/B: Ratio of fungal to bacterial biomass; AMF: Arbuscular fungi biomass; ACT: Actinomycete biomass; GluN: Glucosamine content;MurA: Muramic acid content;ManN: Mannosamine content;GalN: Galactosamine content; SWC: Soil water content; MBC: Microbial biomass carbon content. * denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.01."
陆宇明, 许恩兰, 吴东梅, 等. 凋落物双倍添加和移除对米槠林土壤水解酶活性及其化学计量比的影响. 水土保持学报, 2021, 35 (4): 313- 320. | |
Lu Y M, Xu E L, Wu D M, et al. Effects of double addition or removal of litter on soil hydrolases activities and their stoichiometry in Castanopsis carlesii forest. Journal of Soil and Water Conservation, 2021, 35 (4): 313- 320. | |
庞宗清, 陈伟彬, 苏芳龙, 等. 凋落物和根系输入对南亚热带季风常绿阔叶林土壤养分的影响. 生态学报, 2022, 42 (22): 9143- 9152. | |
Pang Z Q, Chen W N, Su F L, et al. Short-term effects of altered litter and root inputs on soil water-extractable ions in a subtropical monsoon evergreen broadleaf forest, Southern China. Acta Ecologica Sinica, 2022, 42 (22): 9143- 9152. | |
汪景宽, 徐英德, 丁 凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56 (3): 528- 540. | |
Wang J K, Xu Y D, Ding F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 2019, 56 (3): 528- 540. | |
张 彬, 陈 奇, 丁雪丽, 等. 微生物残体在土壤中的积累转化过程与稳定机理研究进展. 土壤学报, 2022, 59 (6): 1479- 1491. | |
Zhang B, Chen Q, Ding X L, et al. Research progress on accumulation, turnover and stabilization of microbial residues in soil. Acta Pedologica Sinica, 2022, 59 (6): 1479- 1491. | |
张 磊, 贾淑娴, 李啸灵, 等. 凋落物和根系输入对亚热带米槠天然林土壤有机碳组分的影响. 水土保持学报, 2021a, 35 (3): 244- 251. | |
Zhang L, Jia S X, Li X L, et al. Effects of litter and root inputs on soil organic carbon fractions in a subtropical natural forest of Castanopsis carlesii. Journal of Soil and Water Conservation, 2021a, 35 (3): 244- 251. | |
张 磊, 贾淑娴, 李啸灵, 等. 改变凋落物和根系输入对米槠天然林土壤微生物群落的影响. 水土保持学报, 2021b, 35 (6): 270- 277. | |
Zhang L, Jia S X, Li X L, et al. Effects of litter and root inputs changing on soil microbial community in a natural Castanopsis carlesii forest. Journal of Soil and Water Conservation, 2021b, 35 (6): 270- 277. | |
Amelung W, Miltner A, Zhang X, et al. Fate of microbial residues during litter decomposition as affected by minerals. Soil Science, 2001, 166 (9): 598- 606.
doi: 10.1097/00010694-200109000-00003 |
|
Appuhn A, Joergensen R G. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 2006a, 38 (5): 1040- 1051.
doi: 10.1016/j.soilbio.2005.09.002 |
|
Appuhn A, Scheller E, Joergensen R G. Relationships between microbial indices in roots and silt loam soils forming a gradient in soil organic matter. Soil Biology and Biochemistry, 2006b, 38 (9): 2557- 2564.
doi: 10.1016/j.soilbio.2006.03.011 |
|
Buckeridge K M, Creamer C, Whitaker J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Functional Ecology, 2022, 36 (6): 1396- 1410.
doi: 10.1111/1365-2435.14014 |
|
Čapek P, Choma M, Tahovská K, et al. Coupling the resource stoichiometry and microbial biomass turnover to predict nutrient mineralization and immobilization in soil. Geoderma, 2021, 385 (1): 114884.
doi: 10.1016/j.geoderma.2020.114884 |
|
Craig M E, Turner B L, Liang C, et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology, 2018, 24 (8): 3317- 3330.
doi: 10.1111/gcb.14132 |
|
Dai W, Peng B, Liu J, et al. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry, 2021, 154 (2): 371- 383.
doi: 10.1007/s10533-021-00792-w |
|
Fang X M, Wang G G, Xu Z J, et al. Litter addition and understory removal influenced soil organic carbon quality and mineral nitrogen supply in a subtropical plantation forest. Plant and Soil, 2021, 460 (1/2): 527- 540.
doi: 10.1007/s11104-020-04787-8 |
|
Feng J Y, Zheng L, Hao Y F, et al. Litter removal exerts greater effects on soil microbial community than understory removal in a subtropical-warm temperate climate transitional forest. Forest Ecology and Management, 2022, 505 (3): 119867.
doi: 10.1016/j.foreco.2021.119867 |
|
Frostegård Å, Tunlid A, BååTh E. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 2011, 43 (8): 1621- 1625.
doi: 10.1016/j.soilbio.2010.11.021 |
|
Guo X W, Luo Z K, Sun, O J. Long-term litter type treatments alter soil carbon composition but not microbial carbon utilization in a mixed pine- oak forest. Biogeochemistry, 2021, 152 (2): 327- 343.
doi: 10.1007/s10533-021-00757-z |
|
Huang Y, Liang C, Duan X W, et al. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma, 2019, 353 (21): 340- 346.
doi: 10.1016/j.geoderma.2019.07.028 |
|
Jackson R B, Lajtha K, Crow S E, et al. 2017. The Ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48(1): 419-445. | |
Joergensen R G. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biology and Biochemistry, 1996, 28 (1): 33- 37.
doi: 10.1016/0038-0717(95)00101-8 |
|
Joergensen R G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54 (5): 559- 568.
doi: 10.1007/s00374-018-1288-3 |
|
Joergensen R G, Wichern F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry, 2008, 40 (12): 2977- 2991.
doi: 10.1016/j.soilbio.2008.08.017 |
|
Lajtha K, Kimberly L, Townsend M G, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystem. Biogeochemistry, 2014, 119 (1−3): 341- 360.
doi: 10.1007/s10533-014-9970-5 |
|
Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25, 3578- 3590.
doi: 10.1111/gcb.14781 |
|
Liang C, Balser T C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 2011, 9 (1): 75. | |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2 (8): 17105.
doi: 10.1038/nmicrobiol.2017.105 |
|
Lin K M, Lyu M K, Jiang M H, et al. Improved allometric equations for estimating biomass of the three Castanopsis carlesii H. forest types in subtropical China. New Forests, 2017, 48 (1): 115- 135.
doi: 10.1007/s11056-016-9559-z |
|
Liu X F, Lin T C, Vadeboncoeur M A, et al. Root litter inputs exert greater influence over soil C than does aboveground litter in a subtropical natural forest. Plant and Soil, 2019, 444 (11): 489- 499.
doi: 10.1007/s11104-019-04294-5 |
|
Ma L X, Ju Z Q, Fang Y Y, et al. Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems. Soil Biology and Biochemistry, 2022, 170 (7): 108693.
doi: 10.1016/j.soilbio.2022.108693 |
|
Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world's forests. Science, 2011, 333 (6046): 988- 93.
doi: 10.1126/science.1201609 |
|
Peng Y, Song S Y, Li Z Y, et al. Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology and Biochemistry, 2020, 142 (3): 107694.
doi: 10.1016/j.soilbio.2019.107694 |
|
Riggs C E, Hobbie S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 2016, 99 (8): 54- 65.
doi: 10.1016/j.soilbio.2016.04.023 |
|
Sayer E J, Heard M S, Grant H K, et al. Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change, 2011, 1 (6): 304- 307.
doi: 10.1038/nclimate1190 |
|
Shao S, Zhao Y, Zhang W, et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology and Biochemistry, 2017, 114 (11): 114- 120.
doi: 10.1016/j.soilbio.2017.07.007 |
|
Simpson A J, Simpson M J, Smith E, et al. 2007. Microbially derived inputs to soil organic matter: are current estimates too low? Environmental Science and Technology, 41(23): 8070−8076. | |
Six J, Frey S D, Thiet R K, et al. 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal. 70(2): 555−569. | |
Van Groenigen K J, Bloem J, BååTh E, et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology and Biochemistry, 2010, 42 (1): 48- 55.
doi: 10.1016/j.soilbio.2009.09.023 |
|
Wan S Z, Fu S L, Zhang C L, et al. Effects of understory removal and litter addition on leaf and twig decomposition in a subtropical Chinese fir plantation. Land Degradation and Development, 2021, 32 (17): 5004- 5011.
doi: 10.1002/ldr.4086 |
|
Wan X H, Huang Z Q, He Z M, et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil, 2015, 387 (1/2): 103- 116.
doi: 10.1007/s11104-014-2277-4 |
|
Wang B R, Liang C, Yao H J, et al. The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration. Catena, 2021a, 207 (12): 105622.
doi: 10.1016/j.catena.2021.105622 |
|
Wang Q C, Yang L M, Song G, et al. The accumulation of microbial residues and plant lignin phenols are more influenced by fertilization in young than mature subtropical forests. Forest Ecology and Management, 2022, 509 (7): 120074.
doi: 10.1016/j.foreco.2022.120074 |
|
Wang X, Dai W W, Trf D, et al. Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry, 2021b, 161 (10): 108381.
doi: 10.1016/j.soilbio.2021.108381 |
|
Yang L M, Chen L S, Li Y, et al. Conversion of natural evergreen broadleaved forests decreases soil organic carbon but Increases the relative contribution of microbial residue in Subtropical China. Forests, 2019, 10 (6): 468- 468.
doi: 10.3390/f10060468 |
|
Zhang X D, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28 (9): 1201- 1206.
doi: 10.1016/0038-0717(96)00117-4 |
[1] | Yang Yang,Baorong Wang,Hui Sun,Yuanyuan Zhou,Jiangbo Qiao,Yi Song,Pingping Zhang,Zimin Li,Yunqiang Wang,Shaoshan An. Review of Soil Microbes Mediating Organic Carbon Conversion Process of the Earth Critical Zone [J]. Scientia Silvae Sinicae, 2024, 60(7): 165-174. |
[2] | Xuejuan Bai,Guoqing Zhai,Jingze Liu. Application of 13C Stable Isotopes in Plant-Microbial-Soil Carbon Cycle in Terrestrial Ecosystem [J]. Scientia Silvae Sinicae, 2024, 60(7): 175-190. |
[3] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[4] | Xinsheng Han,Guangquan Liu,Hao Xu,Liguo Dong,Yongzhong Guo,Yu An,Haixia Wan,Yueling Wang. Spatial Variation and Scale Effect of Surface Soil Organic Carbon Content on Typical Slopes in the Loess Region, Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(1): 19-31. |
[5] | Weibin You,Ying Li,Yan Zhou,Dongjin He. Edge Effect of Pinus massoniana Forest Converted into Tea Plantation on Topsoil Carbon Content in Wuyishan National Park [J]. Scientia Silvae Sinicae, 2023, 59(10): 41-49. |
[6] | Sisheng Luo,Bizhen Luo,Shujing Wei,Haiqing Hu,Xiaochuan Li,Zhenshi Wang,Yufei Zhou,Zhao Song,Yingxia Zhong. Characteristics of Soil Carbon Pool in Pinus massoniana Forest One Year after Moderate Forest Fires [J]. Scientia Silvae Sinicae, 2022, 58(9): 25-35. |
[7] | Jing Yang,Yaoyi Zhang,Siyi Tan,Shu Liao,Dingyi Wang,Kai Yue,Xiangyin Ni,Fuzhong Wu,Yusheng Yang. Effects of Different Tree Species on the Compositions of Soil Aggregates and Their Carbon and Nitrogen Concentrations in Mid-Subtropical Forests [J]. Scientia Silvae Sinicae, 2022, 58(4): 51-61. |
[8] | Panpan Wu,Lijian Zeng,Ping Lei,Dandan Hu,Jinlong Li,Mantang Wang,Quanlin Zhong. Content of Leaf Nutrients and Resorption Efficiency of Major Tree Species in Tsuga chinensis Forest in Wuyi Mountain, Jiangxi Province [J]. Scientia Silvae Sinicae, 2022, 58(1): 12-21. |
[9] | Yanli Gao,Zhijie Yang,Li Zhang,Decheng Xiong. Effects of Different Regenerated Models on Soil Nitrogen Mineralization in Subtropical Evergreen Broad-Leaved Forest [J]. Scientia Silvae Sinicae, 2021, 57(4): 24-31. |
[10] | Jingru Liu,Yi Cao,Han Li,Li Zhang,Chengming You,Zhenfeng Xu,Bo Tan. Diversity of Soil Arthropods during Cinnamomum camphora and Pinus massoniana Litter Decomposition in Low Mountainous and Hilly Areas of Sichuan [J]. Scientia Silvae Sinicae, 2021, 57(11): 119-133. |
[11] | Chungan Li,Zhen Li. Generalizing Predictive Models of Sub-Tropical Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data [J]. Scientia Silvae Sinicae, 2021, 57(10): 23-35. |
[12] | Haiqing Hu,Bizhen Luo,Sisheng Luo,Shujing Wei,Zhenshi Wang,Xiaochuan Li,Fei Liu. Research Progress on Effects of Forest Fire Disturbance on Carbon Pool of Forest Ecosystem [J]. Scientia Silvae Sinicae, 2020, 56(4): 160-169. |
[13] | Zongda Hu,Shirong Liu,Xingliang Liu,Mingxia Luo,Jing Hu,Yafei Li,Hao Yu,Dinghua Ou,Deyong Wu. Characterization of Soil Organic Carbon and Nitrogen Components in Three Natural Secondary Forests in Subalpine Regions of Western Sichuan, China [J]. Scientia Silvae Sinicae, 2020, 56(11): 1-11. |
[14] | Lin Li,Shiguang Wei,Jiangming Ma,Wanhui Ye,Juyu Lian. Relative Effects of Habitat Heterogeneity and Dispersal Limitation on Species Diversity Maintenance in South Subtropical Evergreen Broad-Leaved Forest [J]. Scientia Silvae Sinicae, 2020, 56(10): 1-10. |
[15] | Wang Zhikang, Xu Chenyang, Geng Zengchao, Liu Lili, Hou Lin, Du Can, Wang Qiang, Lü Dongwei. Characteristics of Soil Organic Carbon Density in Two Stands of Xinjiashan in Qinling Mountains Based on a New Method of Deducting Root Volume [J]. Scientia Silvae Sinicae, 2019, 55(6): 133-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||