Scientia Silvae Sinicae ›› 2026, Vol. 62 ›› Issue (1): 19-31.doi: 10.11707/j.1001-7488.LYKX20250034
• Frontiers and hot topics • Previous Articles Next Articles
Qilan Cen,Runhong Liu,Xinyu Luo,Huiqing Song,Peng He,Huizhen Qin,Weijun Shen*(
)
Received:2025-01-16
Revised:2025-11-03
Online:2026-01-25
Published:2026-01-14
Contact:
Weijun Shen
E-mail:shenweijun@gxu.edu.cn
CLC Number:
Qilan Cen,Runhong Liu,Xinyu Luo,Huiqing Song,Peng He,Huizhen Qin,Weijun Shen. Influence and Regulatory Mechanisms of Roots and Mycelium of Pinus massoniana and Castanopsis hystrix Forests and Their Mixed Forest on the Contents of Different Soil Phosphorus Fractions[J]. Scientia Silvae Sinicae, 2026, 62(1): 19-31.
Table 1
Survey of various stand types"
| 林分类型 Stand type | 平均胸径 Mean diameter at breast height/cm | 平均树高 Mean tree height/m | 郁闭度 Canopy density (%) | 坡度 Slope/(°) | 海拔 Altitude/m | |||
| 马尾松 Pinus massoniana | 红锥 Castanopsis hystrix | 马尾松 Pinus massoniana | 红锥 Castanopsis hystrix | |||||
| PP | 45.4±9.0 | — | 25.6±3.2 | — | 77.3±0.1 | 32.1~31.5 | 440~500 | |
| PC | — | 28.4±9.05 | — | 17.6±5.4 | 81.4±1.5 | 28.5~30.3 | 472~567 | |
| MF | 41.1±5.7 | 22.1±6.5 | 20.6±3.3 | 18.1±2.2 | 81.4±0.0 | 31.2~32.5 | 441~503 | |
Table 2
Effect of roots and mycelia on basic physicochemical properties of soil in different stand types"
| 林分类型 Stand type | 根系/菌丝效应 Root/mycelia effect | pH | SWC | TC | TN | TP |
| PP | 根系效应 Root effect | 1.04±0.02 Aa | 0.81±0.13 Ab | 1.03±0.02 Aa | 1.05±0.05 Aa | 1.00±0.03 Aa |
| 菌丝效应 Mycelia effect | 1.02±0.03 Aa | 1.11±0.15 Aa | 0.93±0.06 Bb | 0.99±0.04 Aa | 1.03±0.07 Aa | |
| PC | 根系效应 Root effect | 0.97±0.02 Bb | 1.01±0.06 Aa | 0.98±0.02 Ab | 0.98±0.05 Aa | 1.02±0.04 Aa |
| 菌丝效应 Mycelia effect | 1.02±0.02 Aa | 1.11±0.10 Aa | 1.03±0.02 Aa | 1.01±0.03 Aa | 0.99±0.03 Aa | |
| MF | 根系效应 Root effect | 1.00±0.03 Ba | 1.02±0.10 Aa | 1.00±0.04 Aa | 1.05±0.08 Aa | 0.99±0.04 Aa |
| 菌丝效应 Mycelia effect | 1.00±0.02 Aa | 0.91±0.04 Aa | 1.01±0.04 ABa | 0.94±0.05 Aa | 0.99±0.02 Aa |
| 白昱欣, 刘润洪, 苏洁桦, 等. 树种混交对马尾松和红锥根际与非根际土壤微生物资源限制的影响. 生态学报, 2024, 44 (23): 10770- 10781. | |
| Bai Y X, Liu R H, Su J H, et al. Effects of tree species mixing on bulk and rhizosphere soilmicrobial resource limitation in stands of Pinus massoniana and Castanopsis hystrix. Acta Ecologica sinica, 2024, 44 (23): 10770- 10781. | |
| 鲍士旦. 2000. 土壤农化分析. 3版. 北京: 中国农业出版社. | |
| Bao S D. 2000. Agrochemical analysis of soil. 3rd edition. Beijing: China Agricultural Publishing House. [in Chinese] | |
| 陈 璟, 杨 宁. 亚热带红壤丘陵区5种人工林对土壤性质的影响. 西北农林科技大学学报(自然科学版), 2013, 41 (12): 167- 173, 178. | |
| Chen J, Yang N. Effects of five plantations on soil properties in subtropical red soil hilly region. Journal of Northwest A & F University ( Natural Science Edition), 2013, 41 (12): 167- 173, 178. | |
| 段世龙, 严文辉, 冯 固, 等. 植物根系/菌根途径获取养分的碳磷互惠机制. 植物营养与肥料学报, 2023, 29 (6): 1160- 1167. | |
| Duan S L, Yan W H, Feng G, et al. Carbon-phosphorus reciprocal mechanism for plants to acquire nutrients through the root/mycorrhizal pathway. Journal of Plant Nutrition and Fertilizers, 2023, 29 (6): 1160- 1167. | |
| 郭婉玑. 2021. 氮沉降下菌根外延菌丝对土壤磷有效性的调控机理研究. 成都: 中国科学院大学. | |
| (Guo W J. 2021. Regulation mechanism of soil phosphorus availability by ectomycorrhizal extraradical mycelium under nitrogen deposition. Chengdu: University of Chinese Academy of Sciences. [in Chinese] | |
| 韩东苗, 冯茂松, 吴 韬, 等. 柏木低效林改造对土壤微生物、酶活性及养分的影响. 东北林业大学学报, 2016, 44 (5): 57- 62. | |
| Han D M, Feng M S, Wu T, et al. Effects of transformation of Cypress funebris forest on soil microorganism, enzymatic activity and nutrient. Journal of Northeast Forestry University, 2016, 44 (5): 57- 62. | |
| 贺明霞, 黄雪蔓, 尤业明, 等. 马尾松人工林混交改造下根系-菌丝-微生物互作对土壤磷转化的调控机制. 北京林业大学学报, 2025, 47 (3): 83- 94. | |
| He M X, Huang X M, You Y M, et al. Regulatory mechanism of root-mycelial-microorganism interactions on soil phosphorus transformation of Pinus massoniana plantation under mixed renovation. Journal of Beijing Forestry University, 2025, 47 (3): 83- 94. | |
| 凌高潮, 沈 汉, 范荣德, 等. 不同林龄杉木+闽楠复层异龄混交林土壤碳氮磷化学计量特征. 浙江林业科技, 2022, 42 (6): 14- 20. | |
| Ling G C, Shen H, Fan R D, et al. Growth and stoichiometry characteristics of C, N and P in soiunder mixed plantation of different aged Cunninghamia lanceolata and Phoebe bournei. Journal of Zhejiang Forestry Science and Technology, 2022, 42 (6): 14- 20. | |
| 邱新彩. 2022. 间伐与混交对塞罕坝华北落叶松人工林土壤肥力的影响. 北京: 北京林业大学. | |
| Qiu X C. 2022. Effects of thinning and mixing on soil fertility of Larix principis-rupprechtii plantations in Saihanba Mechanical Forest Farm. Beijing: Beijing Forestry University. [in Chinese] | |
| 石昊楠, 李伟坡, 李智华, 等. 不同混交比例的杉阔混交林对物种多样性和土壤养分的影响. 中南林业科技大学学报, 2022, 42 (12): 34- 41. | |
| Shi H N, Li W P, Li Z H, et al. Effects of fir and broad-leaved mixed forest with differentmixing proportions on the species diversity and soil nutrientsunder the forest. Journal of Central South University of Forestry & Technology, 2022, 42 (12): 34- 41. | |
| 徐云浩, 刘婷婷, 刘贵梅, 等. 混交林林木根系对氮磷养分的吸收利用及竞争策略. 世界林业研究, 2025, 38 (1): 38- 44. | |
| Xu Y H, Liu T T, Liu G M, et al. Absorption and utilization of nitrogen and phosphorus nutrients by tree root systems in mixed forests and their competition strategies. World Forestry Research, 2025, 38 (1): 38- 44. | |
| 张 磊, 贾淑娴, 李啸灵, 等. 亚热带米槠天然林凋落物和根系输入变化对土壤磷组分的影响. 生态学报, 2022, 42 (2): 656- 666. | |
| Zhang L, Jia S X, Li X L, et al. Effects of litter and root inputs changes on soil phosphorus fractions in a subtropical natural forest of Castanopsis carlesii. Acta Ecologica Sinica, 2022, 42 (2): 656- 666. | |
| 张子良. 2018. 西南亚高山针叶林根系与土壤C养分过程的偶联效应研究. 成都: 中国科学院大学. | |
| Zhang Z L. 2018. Coupling effects of roots and soil C-nutrient cycling in subalpine coniferous forests in southwestern China. Chengdu: University of Chinese Academy of Sciences. [in Chinese] | |
|
Baumann K, Jung P, Samolov E, et al. Biological soil crusts along a climatic gradient in Chile: richness and imprints of phototrophic microorganisms in phosphorus biogeochemical cycling. Soil Biology and Biochemistry, 2018, 127, 286- 300.
doi: 10.1016/j.soilbio.2018.09.035 |
|
| Bell C W, Wallenstein M D, Mcmahon S K, et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments, 2013, 81, 50961. | |
|
Cairney J W G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry, 2012, 47, 198- 208.
doi: 10.1016/j.soilbio.2011.12.029 |
|
| Chen X L, Chen H Y H, Chang S X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nature Ecology & Evolution, 2022, 6 (8): 1112- 1121. | |
|
Condron L M, Newman S. Revisiting the fundamentals of phosphorus fractionation of sediments and soils. Journal of Soils and Sediments, 2011, 11 (5): 830- 840.
doi: 10.1007/s11368-011-0363-2 |
|
|
Cui Y X, Bing H J, Moorhead D L et al. Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests. Communications Earth and Environment, 2022, 3 (1): 184.
doi: 10.1038/s43247-022-00523-5 |
|
|
Du E Z, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 2020, 13 (3): 221- 226.
doi: 10.1038/s41561-019-0530-4 |
|
|
Gérard F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils: a myth revisited. Geoderma, 2016, 262, 213- 226.
doi: 10.1016/j.geoderma.2015.08.036 |
|
| German D E, Weintraub M N, Grandy A S, et a1. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43(7): 1387–1397. | |
| Hagenbo A, Clemmensen K E, Finlay R D, et al. Changes in turnover rather than production regulate biomass of ectomycorrhizal fungal mycelium across a Pinus sylvestris chronosequence. New Phytologist, 2016, 214 (1): 424- 431. | |
|
Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 2001, 237 (2): 173- 195.
doi: 10.1023/A:1013351617532 |
|
|
Hirano Y, Kitayama K, Imai N. Interspecific differences in theresponses of root phosphatase activities and morphology to nitrogenand phosphorus fertilization in Bornean tropical rain forests. Ecology and Evolution, 2022, 12 (3): e8669.
doi: 10.1002/ece3.8669 |
|
|
Hou E Q, Chen C R, Kuang Y W, et al. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils. Global Biogeochemical Cycles, 2016, 30 (9): 1300- 1309.
doi: 10.1002/2016GB005371 |
|
|
Hou E Q, Chen C R, Luo Y Q, et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 2018, 24 (8): 3344- 3356.
doi: 10.1111/gcb.14093 |
|
|
Hou E Q, Luo Y Q, Kuang Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11 (1): 637.
doi: 10.1038/s41467-020-14492-w |
|
|
Hou E, Wen D, Jiang L, et al. Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecology Letters, 2021, 24 (7): 1420- 1431.
doi: 10.1111/ele.13761 |
|
| Huang L M, Jia X X, Zhang G L, et al. Soil organic phosphorus transformation during ecosystem development: a review. Plant and Soil, 2017, 417 (1): 17- 42. | |
|
Joergensen R G, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value. Soil Biology and Biochemistry, 1996, 28 (1): 33- 37.
doi: 10.1016/0038-0717(95)00101-8 |
|
|
Lambers H. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 2022, 73 (1): 17- 42.
doi: 10.1146/annurev-arplant-102720-125738 |
|
|
Lambers H, Shane M W, Cramer M D, et al. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany, 2006, 98 (4): 693- 713.
doi: 10.1093/aob/mcl114 |
|
|
Li F R, Liu L L, Liu J L, et al. Abiotic and biotic controls on dynamics of labile phosphorus fractions in calcareous soils under agricultural cultivation. Science of The Total Environment, 2019, 681, 163- 174.
doi: 10.1016/j.scitotenv.2019.05.091 |
|
|
Li J S, Wu B Y, Zhang D D, et al. Elevational variation in soil phosphorus pools and controlling factors in alpine areas of Southwest China. Geoderma, 2023, 431, 116361.
doi: 10.1016/j.geoderma.2023.116361 |
|
|
Li M, You Y M, Tan X M, et al. Mixture of N2-fixing tree species promotes organic phosphorus accumulation and transformation in topsoil aggregates in a degraded karst region of subtropical China. Geoderma, 2022, 413, 115752.
doi: 10.1016/j.geoderma.2022.115752 |
|
|
Lian B, Chen Y, Zhu L, et al. Progress in the study of the weathering of carbonate rock by microbes. Earth Science Frontiers, 2008, 15 (6): 90- 99.
doi: 10.1016/S1872-5791(09)60009-9 |
|
|
Lie Z, Zhou G, Huang W, et al. Warming drives sustained plant phosphorus demand in a humid tropical forest. Global Change Biology, 2022, 28 (13): 4085- 4096.
doi: 10.1111/gcb.16194 |
|
|
Maranguit D, Guillaume T, Kuzyakov Y. Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena, 2017, 149, 385- 393.
doi: 10.1016/j.catena.2016.10.010 |
|
|
Oldroyd G E D, Leyser O. A plant’s diet, surviving in a variable nutrient environment. Science, 2020, 368 (6486): eaba0196.
doi: 10.1126/science.aba0196 |
|
|
Phillips R P, Meier I C, Bernhardt E S, et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 2012, 15 (9): 1042- 1049.
doi: 10.1111/j.1461-0248.2012.01827.x |
|
|
Sui Y, Thompson M L, Shang C. Fractionation of phosphorus in a mollisol amended with biosolids. Soil Science Society of America Journal, 1999, 63 (5): 1174- 1180.
doi: 10.2136/sssaj1999.6351174x |
|
|
Sun F, Song C J, Wang M, et al. Long-term increase in rainfall decreases soil organic phosphorus decomposition in tropical forests. Soil Biology and Biochemistry, 2020, 151, 108056.
doi: 10.1016/j.soilbio.2020.108056 |
|
|
Tian Y, Shi C P, Malo C U, et al. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses. Nature Communications, 2023, 14 (1): 864.
doi: 10.1038/s41467-023-36527-8 |
|
|
Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20 (1): 5- 15.
doi: 10.1890/08-0127.1 |
|
|
Wallander H, Ekblad A, Godbold D L, et al. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils: a review. Soil Biology and Biochemistry, 2013, 57, 1034- 1047.
doi: 10.1016/j.soilbio.2012.08.027 |
|
|
Wang J P, Wu Y H, Zhou J, et al. Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biology and Fertility of Soils, 2016, 52 (6): 825- 839.
doi: 10.1007/s00374-016-1123-7 |
|
|
Wang R Z, Yang J J, Liu H Y, et al. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology, 2022, 103 (3): e3616.
doi: 10.1002/ecy.3616 |
|
|
Wu H L, Xiang W H, Ouyang S, et al. Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Functional Ecology, 2019, 33 (8): 1549- 1560.
doi: 10.1111/1365-2435.13355 |
|
|
Xu H, You Y, Wang Y, et al. Introducing N2-fixing tree species into eucalyptus plantations increases organic phosphorus transformation but decreases its accumulation within aggregates in subtropical China. Plant and Soil, 2024, 504, 191- 208.
doi: 10.1007/s11104-024-06663-1 |
|
|
Yuan Y S, Gu D P, Huang Z X, et al. Plant roots and associated mycelia enhance soil N transformation through different mechanisms in a karst plantation. Journal of Soils and Sediments, 2023, 23 (4): 1687- 1697.
doi: 10.1007/s11368-023-03431-z |
|
|
Yuan Y S, Yin Y C, Adamczyk B, et al. Nitrogen addition alters the relative importance of roots and mycorrhizal hyphae in regulating soil organic carbon accumulation in a karst forest. Soil Biology and Biochemistry, 2024, 195, 109471.
doi: 10.1016/j.soilbio.2024.109471 |
|
|
Zhang L, Zhou J C, George T S, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 2022, 27 (4): 402- 411.
doi: 10.1016/j.tplants.2021.10.008 |
|
|
Zhang Z L, Guo W J, Wang J P, et al. Extraradical hyphae alleviate nitrogen deposition-induced phosphorus deficiency in ectomycorrhiza-dominated forests. New Phytologist, 2023, 239 (5): 1651- 1664.
doi: 10.1111/nph.19078 |
|
|
Zhu X M, Lambers H, Guo W J, et al. Extraradical hyphae exhibit more plastic nutrient-acquisition strategies than roots under nitrogen enrichment in ectomycorrhiza-dominated forests. Global Change Biology, 2023, 29 (16): 4605- 4619.
doi: 10.1111/gcb.16768 |
| [1] | Shirong Liu,Yuanqi Chen,Xiuqing Nie,Angang Ming,Hui Wang. Effects of Tree Species Diversity on Multifunctionality and Resilience of Forest Ecosystems [J]. Scientia Silvae Sinicae, 2026, 62(1): 1-18. |
| [2] | Xiao He,Weisheng Zeng,Xinyun Chen,Hongchao Huang,Xiangdong Lei. Conversion Models of Stand Dominant Height and Mean Height of the Plantations of Four Larix species in China [J]. Scientia Silvae Sinicae, 2026, 62(1): 223-230. |
| [3] | Pingping Li,Yanhui Wang,Pengtao Yu,Yirui Wang,Wenbiao Duan,Yanfang Wan,Xiaocha Wei,Zaijun Shi. Growth Response of Black Locust Plantations to Site Quality and Stand Density on the Loess Plateau of China [J]. Scientia Silvae Sinicae, 2025, 61(7): 192-207. |
| [4] | Zijie Cui,Ge Sun,Yaoqi Zhang,Apeng Du,Xiaodong Liu. Research Progress of the Hydrological Effects of Eucalyptus Plantations in China [J]. Scientia Silvae Sinicae, 2025, 61(7): 129-139. |
| [5] | Xin Ran,Xiaomei Sun,Chunyan Wu,Dongsheng Chen,Hongxing Wang,Shougong Zhang. Effects of Precipitation Reduction and Thinning on the Root Distribution and Physiological Characteristics of Larix kaempferi [J]. Scientia Silvae Sinicae, 2025, 61(7): 157-169. |
| [6] | Jianwen Hu,Changfu Liu,Mengmeng Gou,Lei Lei,Huiling Chen,Jiajia Zhang,Sufeng Zhu,Ruyuan Hu,Wenfa Xiao. Response and Driving Factors of Soil Organic Carbon and Its Fractions to Stand Age in Pinus massoniana Plantation [J]. Scientia Silvae Sinicae, 2025, 61(6): 75-84. |
| [7] | Li Wei, Yu Zhenzhen, He Hui, Zhao Jialu, Liu Xijun. Effects of Carbon Input Change on Soil Bacterial and Fungal Community Structure and Diversity in a Mature Pinus elliottii Plantation [J]. Scientia Silvae Sinicae, 2025, 61(6): 232-242. |
| [8] | Yingjie Sun,Denan Zhang,Yuyi Shen,Guangping Xu,Yang Cao,Kechao Huang,Yunshuang Chen,Xinyue Mao,Qiumei Teng,Shihong Lü,Junzhi Chu. Effects of Simulated Nitrogen Deposition on Soil Microbial Community Structure and Enzyme Activities in Eucalyptus Plantations in Mid-subtropical Region [J]. Scientia Silvae Sinicae, 2025, 61(5): 46-60. |
| [9] | Sufeng Zhu,Mengmeng Gou,Haiping Zhao,Changfu Liu,Zunji Jian,Jianhua Zhu,Wenfa Xiao. Simulated Carbon Dynamics of Pinus massoniana Plantation Ecosystems under Different Harvesting Scenarios Using the CBM-CFS3 Model [J]. Scientia Silvae Sinicae, 2025, 61(12): 24-33. |
| [10] | Qian Li,Fan Zhang,Xiangxue Meng,Xiaoyun Wu,Jianzhuang Pang,Hang Xu,Zhiqiang Zhang. Simulation of Net Carbon Exchange of Poplar Plantation in North China Plain Based on Decomposition-Reconstruction and Machine Learning [J]. Scientia Silvae Sinicae, 2025, 61(12): 72-82. |
| [11] | Xiaoqing Yin,Lan Ma,Fengjiao Niu. Soil Water Transport Characteristics of Robinia pseudoacacia Plantations in the Loess Plateau of Western Shanxi Province under Simulated Drought Conditions [J]. Scientia Silvae Sinicae, 2025, 61(10): 49-59. |
| [12] | Guipeng Cui,Hongzhong Dang,Wei Xiong,Feng Wang,Yonghua Li,Bin Yao,Mengchun Cui,Weiyuan Kong,Qi Lu. Thoughts on Restoration Strategies of Degraded Plantations in the Area of China’s Great Green Wall Project [J]. Scientia Silvae Sinicae, 2025, 61(1): 10-16. |
| [13] | Xiaoyan Zhang,Xiaofeng Ni,Qiong Cai,Chengjun Ji. Leaf Anatomical Traits of Understory Plants and Their Response to Nitrogen Addition in a Chronosequence of Larix principis-rupprechtii Plantations in Saihanba, Hebei Province [J]. Scientia Silvae Sinicae, 2025, 61(1): 37-46. |
| [14] | Jing Xie,Feng Zhang,Zeyuan Zhou,Haiqun Yu,Yi Han,Chunxin Yang,Wei Jiang,Jinzu Liu,Boen Liu,He Liu. Seasonal Variations in Water Use Efficiency of Plantation Ecosystem in an Urban Park of Beijing [J]. Scientia Silvae Sinicae, 2024, 60(9): 12-17. |
| [15] | Wankuan Zhu,Zhichao Wang,Apeng Du,Yuxing Xu. Seasonal Patterns of Carbon and Water Fluxes and Their Environmental Biological Control in the Eucalyptus Plantation in Zhanjiang of Guangdong Province [J]. Scientia Silvae Sinicae, 2024, 60(9): 18-32. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||