Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 10-16.doi: 10.11707/j.1001-7488.LYKX20240502
• Special subject: Infusing Science into the Great Green Wall • Previous Articles Next Articles
Guipeng Cui1,2,Hongzhong Dang1,2,Wei Xiong1,Feng Wang1,Yonghua Li1,Bin Yao1,Mengchun Cui1,Weiyuan Kong1,2,Qi Lu1,2,*()
Received:
2024-08-23
Online:
2025-01-25
Published:
2025-02-09
Contact:
Qi Lu
E-mail:luqi@caf.ac.cn
CLC Number:
Guipeng Cui,Hongzhong Dang,Wei Xiong,Feng Wang,Yonghua Li,Bin Yao,Mengchun Cui,Weiyuan Kong,Qi Lu. Thoughts on Restoration Strategies of Degraded Plantations in the Area of China’s Great Green Wall Project[J]. Scientia Silvae Sinicae, 2025, 61(1): 10-16.
Table 1
Concepts and definitions of degraded plantations"
概念 Concepts | 定义 Definitions | 来源 Sources |
退化林 Degraded forest | 受到人为干扰或自然灾害影响,森林结构发生逆向改变,森林生态系统服务功能或生产力持续性明显下降,依靠自然力短期内难以恢复的森林 Forests that are affected by human disturbance or natural disasters, reverse changes in forest structure, and the sustainability of forest ecosystem services or productivity are significantly reduced, and it is difficult to recover in the short term by relying on natural forces | 《退化林修复技术规程》 (GB/T 44351—2024) Code of practice for degraded forest remediation and restoration (GB/T 44351—2024) |
退化林分 Degraded stand | 因自然、生理和人为干扰等因素,林木生长衰退,林分结构不合理,防护功能下降的人工起源乔木林、灌木林和林带 Arbor forests, shrubs and forest belts of artificial origin are caused by natural, physiological and human disturbance factors, which lead to the decline of forest tree growth, unreasonable stand structure and reduced protective function | 《三北防护林退化林分修复技术规程》(LY/T 2786—2017) Technical regulations for degraded stand restoration of the Three-north shelter belt forest program (LY/T 2786—2017) |
退化防护林 Degraded protective forest | 由于生理衰败、遭受自然灾害、外部环境变化、人为过度干扰等,林分提前或加速进入衰退阶段,出现枯死、濒死、生长不良等现象,导致结构失调、稳定性降低、功能下降甚至丧失,且难以自然恢复的防护林 Due to physiological decay, natural disasters, changes in the external environment, excessive human interference, etc., the stand enters the stage of decline in advance or accelerated, and there are phenomena such as death, dying, and poor growth, resulting in structural disorders, reduced stability, functional decline or even loss, and it is difficult to recover naturally | 《退化防护林修复技术规程》 (LY/T 3179—2020) Technical regulation for the restoration of degraded protective forest (LY/T 3179—2020) |
低效林 Low function forest | 受人为或自然因素影响,林分结构和稳定性失调,林木生长发育迟滞,系统功能退化或丧失,导致森林生态功能、林产品产量或生物量显著低于同类立地条件下相同林分平均水平,不符合培育目标的林分总称。低效林按起源可分为低效次生林和低效人工林 Affected by human or natural factors, the structure and stability of forest stands are out of balance, the growth and development of forest trees are retarded, and the system function is degraded or lost, resulting in forest ecological functions, forest product yield or biomass being significantly lower than the average level of the same stand under the same site conditions, and the general term of forest stands that do not meet the cultivation goals. Low function forests can be divided into inefficient secondary forests and inefficient plantations according to their origins | 《低效林改造技术规程》 (LY/T1690—2017) Technical regulation of restoration of low function forest (LY/T1690—2017) |
土地退化 Land degradation | 由于气候变化和人为活动(土地利用)等1种或多种营力共同作用,土地生物或经济生产力和复杂性下降或丧失 The reduction or loss of biological or economic productivity and complexity of land due to a combination of one or more productive forces, such as climate change and anthropogenic activities (land use) | 《土地退化类型与分级规范》 (LY/T 3354—2023) Types and degrees specification of land degradation ( LY/T 3354—2023) |
森林退化 Forest degradation | 森林所提供的总体惠益长期以来不断减少,包括林木、生物多样性以及其他产品和服务的减少。在全球森林资源评估中,要求各国说明其在评估森林退化程度和严重性时所采用的森林退化定义 The overall benefits provided by forests have been declining over time, including the loss of trees, biodiversity, and other goods and services. In the global forest resources assessment, countries are asked to describe the definition of forest degradation they use to assess the extent and severity of forest degradation | 联合国粮食及农业组织, 《2024世界森林状况》 FAO. 2024 the states of the world’s forests |
党宏忠, 陈 帅, 钟 鹏, 等. 樟子松人工林自然更新过程中断的机制及可能调控途径. 林业科学, 2024, 60 (12): 158- 167.
doi: 10.11707/j.1001-7488.LYKX20240077 |
|
Dang H Z, Chen S, Zhong P, et al. Mechanism and possible regulatory approaches of interruption in the natural regeneration process of Pinus sylvestris var. mongolica plantations in China. Scientia Silvae Sinicae, 2024, 60 (12): 158- 167.
doi: 10.11707/j.1001-7488.LYKX20240077 |
|
段 河, 张建波, 张忠旺. 内蒙古三北工程区退化林现状分析与修复建议. 林业资源管理, 2022, (1): 174- 179. | |
Duan H, Zhang J B, Zhang Z W. Status analysis and restoration suggestions of degraded forest in Three-North engineering area of Inner Mongolia. Forest Resource Management, 2022, (1): 174- 179. | |
范志平, 曾德慧, 冀晓燕, 等. 农田防护林生态系统经营管理研究. 北京林业大学学报, 2004, 26 (4): 81- 84. | |
Fan Z P, Zeng D H, Ji X Y, et al. Advances in management of farmland shelterbelt ecosystems. Journal of Beijing Forestry University, 2004, 26 (4): 81- 84. | |
兰 倩, 陈绍志, 邬可义, 等. 退化林修复研究进展. 世界林业研究, 2021, 34 (5): 50- 57. | |
Lan Q, Chen S Z, Wu K Y, et al. Progress of degraded forests restoration research. World Forestry Research, 2021, 34 (5): 50- 57. | |
刘世荣. 2024. 实现“双碳”如何用好森林这座富矿. 学习时报, https://www.forestry.gov.cn/c/www/sl/548888.jhtml. | |
Liu S R. 2024. Achieving "Dual Carbon" goals: How to make good use of forests as a rich mine. Study Times, https://www.forestry.gov.cn/c/www/sl/548888.jhtml. [in Chinese] | |
卢 琦, 肖春蕾, 包英爽, 等. 打赢“三北”攻坚战, 再造一个“新三北”: 实现路径与战略规划. 中国科学院院刊, 2023, 38 (7): 956- 965. | |
Lu Q, Xiao C L, Bao Y S, et al. Implementation path and strategic planning of winning the battle of “Three-North” and reconstructing “New Three-North”. Bulletin of Chinese Academy of Sciences, 2023, 38 (7): 956- 965. | |
路伟伟, 吴 波, 白建华, 等. 樟子松人工林退化原因及研究展望. 科学通报, 2023, 68 (11): 1286- 1297. | |
Lu W W, Wu B, Bai J H, et al. Causes and research prospects of the decline of Pinus sylvestris var. mongolica plantation. Science Bulletin, 2023, 68 (11): 1286- 1297. | |
任 海, 彭少麟, 陆宏芳. 退化生态系统恢复与恢复生态学. 生态学报, 2004, 24 (8): 1756- 1764. | |
Ren H, Peng S L, Lu H F. The restoration of degraded ecosystem and restoration ecology. Acta Ecologica Sinica, 2004, 24 (8): 1756- 1764. | |
孙立博, 余新晓, 陈丽华, 等. 坝上高原杨树人工林的枯落物及土壤水源涵养功能退化. 水土保持学报, 2019, 33 (1): 104- 110. | |
Sun L B, Yu X X, Chen L H, et al. Degradation of litter and soil water conservation function of poplar plantation in Bashang Plateau. Journal of Soil and Water Conservation, 2019, 33 (1): 104- 110. | |
于贵瑞, 谢高地, 王秋凤, 等. 西部地区植被恢复重建中几个问题的思考. 自然资源学报, 2002, 17 (2): 216- 220.
doi: 10.3321/j.issn:1000-3037.2002.02.014 |
|
Yu G R, Xie G D, Wang Q F, et al. Considerations to some issues on vegetation rehabilitation in western China. Journal of Natural Resources, 2002, 17 (2): 216- 220.
doi: 10.3321/j.issn:1000-3037.2002.02.014 |
|
王 锋, 卢 琦. 沙地樟子松散生单木的天然更新幼苗空间分布模型. 林业科学, 2019, 55 (8): 1- 8.
doi: 10.11707/j.1001-7488.20190801 |
|
Wang F, Lu Q. A spatial-explicit seedling recruitment model for scattered individual trees of Pinus sylvestris var. mongolica. Scientia Silvae Sinicae, 2019, 55 (8): 1- 8.
doi: 10.11707/j.1001-7488.20190801 |
|
张 欢, 曹 俊, 王化冰, 等. 张北地区退化杨树防护林的水分利用特征. 应用生态学报, 2018, 29 (5): 1381- 1388. | |
Zhang H, Cao J, Wang H B, et al. Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China. The journal of applied ecology, 2018, 29 (5): 1381- 1388. | |
张新时. 关于生态重建和生态恢复的思辨及其科学涵义与发展途径. 植物生态学报, 2010, 34 (1): 112- 118.
doi: 10.3773/j.issn.1005-264x.2010.01.014 |
|
Zhang X S. An intellectual enquiring about ecological restoration and recovery, their scientific implication and approach. Chinese Journal of Plant Ecology, 2010, 34 (1): 112- 118.
doi: 10.3773/j.issn.1005-264x.2010.01.014 |
|
赵 平, 彭少麟, 张经炜. 恢复生态学——退化生态系统生物多样性恢复的有效途径. 生态学杂志, 2000, 19 (1): 53- 58.
doi: 10.3321/j.issn:1000-4890.2000.01.009 |
|
Zhao P, Peng S L, Zhang J W, et al. Restoration ecology — An effective way to restore biodiversity of degraded ecosystems. Chinese Journal of Ecology, 2000, 19 (1): 53- 58.
doi: 10.3321/j.issn:1000-4890.2000.01.009 |
|
朱教君, 郑 晓. 2019. 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 38(5): 1600−1610. | |
Zhu J J, Zheng X. 2019. The prospects of development of the Three-North Afforestation Program ( TNAP) : on the basis of the results of the 40-year construction general assessment of the TNAP. Chinese Journal of Ecology, 38(5): 1600−1610. [in Chinese] | |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001 |
|
Gampe D, Zscheischler J, Reichstein M, et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nature Climate Change, 2021, 11 (9): 772- 779.
doi: 10.1038/s41558-021-01112-8 |
|
Jiao W Z, Wang L X, Smith W K, et al. Observed increasing water constraint on vegetation growth over the last three decades. Nature Communications, 2021, 12 (1): 3777.
doi: 10.1038/s41467-021-24016-9 |
|
Qi K, Zhu J J, Zheng X, et al. Impacts of the world’s largest afforestation program (Three-North Afforestation Program) on desertification control in sandy land of China. Giscience & Remote Sensing, 2023, 60 (1): 2167574. | |
Smith M D, Wilkins K D, Holdrege M C, et al. 2024. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proceedings of the National Academy of Sciences, 121(4): e1985086176. | |
Vernon M J, Sherriff R L, van Mantgem P, et al. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. Forest Ecology and Management, 2018, 422, 190- 198.
doi: 10.1016/j.foreco.2018.03.043 |
|
Yan Z, Guo Y, Sun B, et al. Combating land degradation through human efforts: Ongoing challenges for sustainable development of global drylands. Journal of Environmental Management, 2024, 354, 120254.
doi: 10.1016/j.jenvman.2024.120254 |
|
Yin J B, Gentine P, Slater L, et al. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nature Sustainability, 2023, 6 (3): 259- 272.
doi: 10.1038/s41893-022-01024-1 |
|
Yuan X, Wang Y M, Ji P, et al. A global transition to flash droughts under climate change. Science, 2023, 380 (6641): 187- 191.
doi: 10.1126/science.abn6301 |
[1] | Qingbin Jiang,Jingxiang Meng,Baojun Li,Haijun Chen,Bijiang Fang,Lang Guo,Shenghui Tian. Genetic Evaluation and Selection of 8-Year-Old Semi-Sibling Family of Michelia macclurei [J]. Scientia Silvae Sinicae, 2025, 61(1): 104-114. |
[2] | Shuya Yang,Jingru Wang,Yingying Zhu,Lita Yi,Meihua Liu. Effects of Mixed Plantation of Cunninghamia lanceolata and Phoebe chekiangensis on Root Exudates and Community Structure of Arbuscular Mycorrhizal Fungi [J]. Scientia Silvae Sinicae, 2024, 60(9): 59-68. |
[3] | Lixia Chen,Feng Lu,Hongxing Jiang,Ge Sun,Xiupeng Yue,Yixuan Wang,Tong Gao,Xingbo Hu,Changqing Ding. Predicting the Distribution of Suitable Habitats for Oriental Storks Based on Satellite Tracking in Yellow River Delta [J]. Scientia Silvae Sinicae, 2024, 60(8): 46-56. |
[4] | Guangdao Bao,Ting Liu,Zhonghui Zhang,Zhibin Ren,Chang Zhai,Mingming Ding,Xuefei Jiang. Remote Sensing Inversion of Effective Leaf Area Index of Four Coniferous Forest Types and Their Spatial Distribution Rule in Changbai Mountain [J]. Scientia Silvae Sinicae, 2024, 60(5): 127-138. |
[5] | Xia Wang,Yinzhu Cao,Huafeng Wu,Daofeng Liu,Shunzhao Sui. Cloning and Functional Analysis of the Transcription Factor CpBBX24 Gene of Chimonanthus praecox [J]. Scientia Silvae Sinicae, 2024, 60(4): 127-135. |
[6] | Lü Ziqing, Duan Aiguo. Biomass and Carbon Storage Model of Cunninghamia lanceolata in Different Production Areas [J]. Scientia Silvae Sinicae, 2024, 60(2): 1-11. |
[7] | Hanzhou Ye,Jinhe Fu,Haitao Cheng,Fuming Chen,Shuyan Yang,Ge Wang. The Current Status and Market Development Potential of Processing Technology and Products Using Bamboo as a Substitute for Plastic [J]. Scientia Silvae Sinicae, 2024, 60(1): 129-141. |
[8] | Linxin Dai,Zhihui Wang,Zhenrui Li,Jiajun Wang,Xing’e Liu,Jialong Wen,Jianfeng Ma. Pyrolysis Characteristics of the Main Components of Bamboo Cell Wall Using TG-FTIR [J]. Scientia Silvae Sinicae, 2023, 59(11): 85-94. |
[9] | Hao Zhou,Baiketuerhan Yeerjiang,Huaijiang He,Chunyu Zhang,Xiuhai Zhao,Minhui Hao. Biomass Distribution Characteristics and Species-Specific Allometric Equations for Afforestation Species in Northeast China [J]. Scientia Silvae Sinicae, 2023, 59(11): 23-32. |
[10] | Fengyu Li,Ping Huang,Yongqi Zheng,Changhong Li,Yuting Zhang,Kena Xue,Yichen Zong,Hongjie Zhao. Analysis and Evaluation of Variety Discrimination Power among Genus Camellia with Loci Combinations Selected by Using SSR Markers [J]. Scientia Silvae Sinicae, 2023, 59(8): 74-84. |
[11] | Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau [J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77. |
[12] | Yi Wang,Junwei Luan,Chen Chen,Shirong Liu. Asymmetric Response of Soil Respiration and Its Components to Nitrogen and Phosphorus Addition in Phyllostachys edulis Forest [J]. Scientia Silvae Sinicae, 2023, 59(7): 54-64. |
[13] | Tianrun Cai,Jia Guo,Ziyi Wang,Yaxin Song,Shumin Zhang,Minsheng Yang,Jun Zhang. Spatial Pattern Analysis of Clonal Growth of Robinia pseudoacacia in Mountainous Areas Based on SSR Molecular Markers [J]. Scientia Silvae Sinicae, 2023, 59(6): 19-27. |
[14] | Fucheng Yang,Xiaoyong Lei,Jianhui Zeng,Mingqin Shao,Yijin Zhi. Foraging Behavior and Population Dynamics of Ciconia boyciana in Two Areas of Poyang Lake during the Wintering Period [J]. Scientia Silvae Sinicae, 2023, 59(5): 128-135. |
[15] | Kuanbiao Qiu,Xiaoting Li,Junfeng Cheng,Baoquan Jia. Dynamics of Urban Tree Canopy Patches within the 6th Ring Road in Beijing Based on Morphological Spatial Pattern Analysis (MSPA) Method [J]. Scientia Silvae Sinicae, 2023, 59(5): 11-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||