Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (12): 24-33.doi: 10.11707/j.1001-7488.LYKX20250408
• Frontiers and hot topics • Previous Articles
Sufeng Zhu1,Mengmeng Gou1,2,Haiping Zhao1,Changfu Liu1,2,*(
),Zunji Jian1,2,Jianhua Zhu1,2,Wenfa Xiao1,2
Received:2025-06-24
Revised:2025-09-12
Online:2025-12-25
Published:2026-01-08
Contact:
Changfu Liu
E-mail:liucf898@163.com
CLC Number:
Sufeng Zhu,Mengmeng Gou,Haiping Zhao,Changfu Liu,Zunji Jian,Jianhua Zhu,Wenfa Xiao. Simulated Carbon Dynamics of Pinus massoniana Plantation Ecosystems under Different Harvesting Scenarios Using the CBM-CFS3 Model[J]. Scientia Silvae Sinicae, 2025, 61(12): 24-33.
Table 1
Description of Pinus massoniana plantation plots"
| 气候分区 Climate zone | 林分密度等级 Stand density grade | 样地数量 Number of plots | 林龄≥35 a 的样地 数量占比 Number share of plots with stand age≥35 a (%) | 平均林龄 Average stand age/a | 林分密度 Stand density/ hm?2 | 林分蓄积量 Stand volume/ (m3 ? hm?2) |
| 南亚热带 South subtropical | 高 High | 25 | 8.00 | 9~40 | 1 550~3 050 | 27.98~233.48 |
| 中 Middle | 67 | 20.90 | 11~52 | 533~148 3 | 8.20~200.96 | |
| 低 Low | 14 | 14.29 | 12~55 | 183~483 | 4.24~93.91 | |
| 中亚热带 Middle subtropical | 高 High | 215 | 13.30 | 6~54 | 1 514~4 183 | 22.58~319.07 |
| 中 Middle | 275 | 20.00 | 6~65 | 510~1 500 | 6.88~259.45 | |
| 低 Low | 74 | 16.22 | 2~50 | 83~500 | 1.18~191.17 | |
| 北亚热带 North subtropical | 高 High | 67 | 23.88 | 9~47 | 1 514~3 358 | 24.23~318.04 |
| 中 Middle | 86 | 31.40 | 14~54 | 517~1 499 | 15.29~177.24 | |
| 低 Low | 24 | 37.50 | 12~45 | 60~500 | 3.76~51.90 |
Table 2
Parameter modifications of the CBM-CFS3 model"
| 参数 Parameter | 碳库 Carbon pools | 修改前 Before modification | 修改后 After modification | 参考来源 Reference source |
| 生物量周转参数 Biomass turnover parameters | 干 Stem | 0.45~0.67 | 1.94 | 付甜,2013 |
| 枝 Branch | 75 | 60.61 | ||
| 叶 Foliage | 95 | 33.56 | ||
| 根 Root | 2 | 1.79 | ||
| 死亡有机质及土壤周转参数 Dead organic matter and soil turnover parameters | 地上各碳库 Aboveground carbon pools | 0.015~0.36 | 0.02~0.43 | 冯源,2020 |
| 地下各碳库 Underground carbon pools | 0.003 3~0.5 | 0~0.4 | ||
| 含碳系数 Carbon content coefficient | 干 Stem | 0.5 | 0.518 6 | LY/T 2263—2014 |
| 枝 Branch | 0.5 | 0.517 4 | ||
| 叶 Foliage | 0.5 | 0.578 5 | ||
| 根 Root | 0.5 | 0.508 2 |
Table 3
Age-volume growth equation fitting results for different stand types"
| 分区 Zones | 密度等级 Density grade | 最佳拟合方程 Best fitting equation | R2 | MAE/ (m3?hm?2) | RMSE/ (m3?hm?2) |
| 南亚热带 South subtropical | 高 High | 0.80 | 12.83 | 14.95 | |
| 中 Medium | 0.81 | 11.85 | 13.94 | ||
| 低 Low | 0.67 | 4.01 | 4.56 | ||
| 中亚热带 Middle subtropical | 高 High | 0.57 | 15.54 | 17.50 | |
| 中 Medium | 0.82 | 9.38 | 11.01 | ||
| 低 Low | 0.87 | 2.39 | 2.86 | ||
| 北亚热带 North subtropical | 高 High | 0.62 | 7.89 | 9.13 | |
| 中 Medium | 0.85 | 7.22 | 8.45 | ||
| 低 Low | 0.84 | 3.15 | 3.72 |
Table 4
Distribution of carbon stocks in Pinus massoniana plantations estimated for each inventory period"
| 数据源 Data source | 生态系统碳密度 Ecosystem carbon density/ (Mg?hm?2) | 生物量碳密度 Biomass carbon density/ (Mg?hm?2) | 土壤碳密度 Soil carbon density/ (Mg?hm?2) | 死亡有机质碳密度 Dead organic matter carbon density/ (Mg?hm?2) |
| 第7期 No. 7 | 125.90 | 38.21 | 55.71 | 31.98 |
| 第8期 No. 8 | 125.06 | 37.38 | 55.74 | 31.94 |
| 第9期 No. 9 | 125.45 | 37.41 | 55.80 | 32.24 |
| 曹 正, 苏宝玲, 张岩松, 等. 抚育间伐对辽东山区日本落叶松人工林碳储量及其组成的影响. 应用生态学报, 2025, 36 (7): 1991- 1999. | |
| Cao Z, Su B L, Zhang Y S, et al. Effects of thinning on carbon stocks and fractions of Larix kaempferi plantation in eastern area of Liaoning Province, China. Chinese Journal of Applied Ecology, 2025, 36 (7): 1991- 1999. | |
| 陈会玲, 勾蒙蒙, 刘常富, 等. 鄂中丘陵区不同林龄马尾松人工林林下植物多样性与土壤理化性质关系. 生态环境学报, 2024, 33 (10): 1525- 1533. | |
| Chen H L, Gou M M, Liu C F, et al. Relationship between understory plant diversity and soil physicochemical properties of different aged Pinus massoniana plantations in hilly region of central Hubei Province. Ecology and Environmental Sciences, 2024, 33 (10): 1525- 1533. | |
| 刁娇娇, 肖文娅, 费 菲, 等. 间伐对杉木人工林生长及生态系统碳储量的短期影响. 西南林业大学学报 (自然科学), 2017, 37 (3): 134- 139. | |
| Diao J J, Xiao W Y, Fei F, et al. Short effect of thinning on the growth and carbon storage of Cunninghamia lanceolata plantation. Journal of Southwest Forestry University (Natural Sciences), 2017, 37 (3): 134- 139. | |
| 冯 源. 2020. 气候变化和自然干扰对三峡库区森林生态系统碳收支的影响. 北京: 中国林业科学研究院. | |
| Feng Y. 2020. Effects of climate change and natural disturbances on carbon budget of forest ecosystem in the Three Gorges Reservoir Area. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 冯 源, 付 甜, 朱建华, 等. 加拿大碳收支模型(CBM-CFS3)原理、结构及应用. 世界林业研究, 2014, 27 (3): 87- 91. | |
| Feng Y, Fu T, Zhu J H, et al. Principle, structure and application of carbon budget model (CBM-CFS3) in Canada. World Forest Research, 2014, 27 (3): 87- 91. | |
| 付 甜. 2013. 基于CBM-CFS3模型的三峡库区主要森林生态系统碳计量. 北京: 中国林业科学研究院. | |
| Fu T. 2013. Carbon estimation of main forest ecosystem in Three Gorges Reservoir Area using CBM-CFS3. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 国家林业和草原局. 2019. 中国森林资源报告(2014—2018). 北京: 中国林业出版社. | |
| National Forestry and Grassland Administration. 2019. Report on China’s forest resources (2014—2018). Beijing: China Forestry Publishing House. [in Chinese] | |
| 黄国贤, 李清林, 罗盛金, 等. 基于加拿大CBM-CFS3模型的江西庐山森林碳储特征研究. 江西农业大学学报, 2016, 38 (4): 695- 705. | |
| Huang G X, Li Q L, Luo S J, et al. Forest carbon storage in Lushan based on CBM-CFS3 model. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38 (4): 695- 705. | |
| 简尊吉, 雷 蕾, 倪妍妍, 等. 砾石对马尾松人工林土壤有机碳密度评估的影响. 应用生态学报, 2023, 34 (8): 2073- 2081. | |
| Jian Z J, Lei L, Ni Y Y, et al. Effects of gravel on the evaluation of soil organic carbon density in Pinus massoniana plantations. Chinese Journal of Applied Ecology, 2023, 34 (8): 2073- 2081. | |
| 雷 蕾, 肖文发. 采伐对森林土壤碳库影响的不确定性. 林业科学研究, 2015, 28 (6): 892- 899. | |
| Lei L, Xiao W F. Uncertainty effect of forest harvest on soil carbon pool: a review. Forest Research, 2015, 28 (6): 892- 899. | |
| 孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响. 北京林业大学学报, 2016, 38 (12): 1- 13. | |
| Sun Z H, Wang X Q, Chen X W. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem. Journal of Beijing Forestry University, 2016, 38 (12): 1- 13. | |
| 王冰怡, 张 勇, 吴翠蓉, 等. 不同造林年限马尾松林碳密度结构特征及其影响因素. 浙江农林大学学报, 2025, 42 (2): 291- 301. | |
| Wang B Y, Zang Y, Wu C R, et al. Characteristics and influencing factors of carbon density structure in Pinus massoniana forests with different afforestation years. Journal of Zhejiang A & F University, 2025, 42 (2): 291- 301. | |
|
徐 浩, 岳 超, 朴世龙. 科学规划植树造林把握森林碳汇对“碳中和”战略的服务窗口期. 中国科学: 地球科学, 2023, 53 (12): 3010- 3014.
doi: 10.1360/SSTe-2023-0203 |
|
|
Xu H, Yue C, Piao S L. Future forestation in China should aim to align the temporal service window of the forest carbon sink with the “carbon neutrality” strategy. Scientia Sinica (Terrae), 2023, 53 (12): 3010- 3014.
doi: 10.1360/SSTe-2023-0203 |
|
| 徐奇刚, 雷相东, 郑 宇, 等. 基于Richards方程的冷杉树高曲线深度神经网络激活函数. 林业科学, 2023, 59 (10): 50- 56. | |
| Xu Q G, Lei X D, Zheng Y, et al. A new activation function based on Richards equation for tree height-diameter deep neural network model of Abies nephrolepis. Scientia Silvae Sinicae, 2023, 59 (10): 50- 56. | |
| 于贵瑞. 2009. 人类活动与生态系统变化的前沿科学问题. 北京: 高等教育出版社. | |
| Yu G R. 2009. Frontier scientific issues of human activities and ecosystem change. Beijing: Higher Education Press. [in Chinese] | |
| 张煜星, 王雪军, 蒲 莹, 等. 1949—2018年中国森林资源碳储量变化研究. 北京林业大学学报, 2021, 43 (5): 1- 14. | |
| Zhang Y X, Wang X J, Pu Y, et al. Changes in forest resource carbon storage in China between 1949 and 2018. Journal of Beijing Forestry University, 2021, 43 (5): 1- 14. | |
| 章 敏, 王 健, 韩天一, 等. 基于CBM-CFS3模型的马尾松林碳密度特征及其影响因素. 林业资源管理, 2022 (6): 44- 53. | |
| Zhang M, Wang J, Han T Y, et al. Characteristics of carbon density and its influencing factors of Pinus massoniana forest based on CBM-CFS3 model. Forest and Grassland Resources Research, 2022 (6): 44- 53. | |
| 赵 圆, 于 颖, 范文义. 黑河市森林生态系统碳汇估计及火干扰分析. 森林工程, 2025, 41 (5): 1000- 1012. | |
| Zhao Y, Yu Y, Fan W Y. Assessment of carbon stocks and fire disturbance analysis of forest ecosystems in Heihe City. Forest Engineering, 2025, 41 (5): 1000- 1012. | |
|
Baskent E Z, Kašpar J, Baskent H. Implications of carbon management with forest plantation on understocked, degraded and bare forests: Simulated long-term dynamics between timber production and carbon sequestration. Renewable Energy, 2025, 242, 122437.
doi: 10.1016/j.renene.2025.122437 |
|
|
Bastin J F, Finegold Y, Garcia C, et al. The global tree restoration potential. Science, 2019, 365 (6448): 76- 79.
doi: 10.1126/science.aax0848 |
|
|
Cao Z Y, Zhang J Z, Gou X H, et al. Increasing forest carbon sinks in cold and arid northeastern Tibetan Plateau. Science of The Total Environment, 2023, 905, 167168.
doi: 10.1016/j.scitotenv.2023.167168 |
|
| Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4015- 4020. | |
|
Guo Z C, Li Y Q, Wang X Y, et al. Remote sensing of soil organic carbon at regional scale based on deep learning: A case study of agro-pastoral ecotone in Northern China. Remote Sensing, 2023, 15 (15): 3846.
doi: 10.3390/rs15153846 |
|
|
Hennigar C R, MacLean D A. Spruce bud worm and management effects on forest and wood product carbon for an intensively managed forest. Canadian Journal of Forest Research, 2010, 40 (9): 1736- 1750.
doi: 10.1139/X10-104 |
|
|
Jia X L, Han H T, Feng Y, et al. Scale-dependent and driving relationships between spatial features and carbon storage and sequestration in an urban park, in Zhengzhou, China. Science of The Total Environment, 2023, 894, 164916.
doi: 10.1016/j.scitotenv.2023.164916 |
|
|
Lin B Q, Ge J M. To harvest or not to harvest? Forest management as a trade-off between bioenergy production and carbon sink. Journal of Cleaner Production, 2020, 268, 122219.
doi: 10.1016/j.jclepro.2020.122219 |
|
|
Luyssaert S, Schulze E D, Börner A, et al. Old-growth forests as global carbon sinks. Nature, 2008, 455, 213- 215.
doi: 10.1038/nature07276 |
|
| Ma Z Q, Hartmann H, Wang H M, et al. Carbon dynamics and stability between native Masson pine and exotic slash pine plantations in subtropical China. European Journal of Forest Research, 2014, 133 (2): 307- 321. | |
|
Wang C Q, Xue L, Dong Y H, et al. Soil organic carbon fractions, C-cycling hydrolytic enzymes, and microbial carbon metabolism in Chinese fir plantations. Science of the Total Environment, 2021, 758, 143695.
doi: 10.1016/j.scitotenv.2020.143695 |
|
|
Wang Y Y, Deng L, Wu G L, et al. Estimates of carbon storage in grassland ecosystems on the Loess Plateau. Catena, 2018, 164, 23- 31.
doi: 10.1016/j.catena.2018.01.007 |
|
| West P W. 2005. Tree and forest measurement. 2ed. Berlin: Springer-Verlag. | |
|
Williams B A, Beyer H L, Fagan M E, et al. Global potential for natural regeneration in deforested tropical regions. Nature, 2024, 636 (8041): 131- 137.
doi: 10.1038/s41586-024-08106-4 |
|
| Woodbury P B, Smith J E, Heath L S. Carbon sequestration in the U. S. forest sector from 1990 to 2010. Forest Ecology and Management, 2007, 241 (1/3): 14- 27. | |
|
Yang H, Ciais P, Frappart F, et al. Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nature Geoscience, 2023, 16 (10): 886- 892.
doi: 10.1038/s41561-023-01274-4 |
|
| Yu Z, Liu S R, Li H K, et al. Maximizing carbon sequestration potential in Chinese forests through optimal management. Nature Communication, 2024, 15 (1): 3154. |
| [1] | Kaijie Yang,Weiwei Cong,Sen Lu,Yiming Feng,Feng Wang. Characteristics of Carbon Flux Variations and Its Effects of Environmental Factors in Temperate Elm Savnanna Ecosystem [J]. Scientia Silvae Sinicae, 2025, 61(9): 12-21. |
| [2] | Xiaoyan Xiong,Caixia Li,Guoqi Chai,Long Chen,Xiang Jia,Lingting Lei,Xiaoli Zhang. Estimation of Aboveground Biomass in Regional Forests by Using Integrating UAV-LiDAR and GEDI Data [J]. Scientia Silvae Sinicae, 2025, 61(8): 142-153. |
| [3] | Guirui Yu,Kexin Guo,Tianxiang Hao. Preliminary Exploration on the Construction of Forestry Ecological Economic System in the New Era [J]. Scientia Silvae Sinicae, 2025, 61(7): 8-22. |
| [4] | Xiaohang Bai,Jieping Chen. Public Preference and Perception for Cultural Ecosystem Services of Urban Forest Parks [J]. Scientia Silvae Sinicae, 2025, 61(6): 99-108. |
| [5] | Laixian Xu,Youjun He. Comparison and Implications for Pricing Mechanisms of Forestry Carbon Sink Products [J]. Scientia Silvae Sinicae, 2025, 61(4): 231-248. |
| [6] | Ruting Chen,Defu Chi. Effects of Pest and Disease Disturbance on Forest Carbon Sink — a Review [J]. Scientia Silvae Sinicae, 2025, 61(2): 1-11. |
| [7] | Yanling Tang,Qiaoling Han,Yue Zhao,Weiping Liu,Yili Zheng,Yandong Zhao,Shanshan Xu. A Forest Pest Detection Algorithm Based on Multi-scale Sequence Feature Fusion [J]. Scientia Silvae Sinicae, 2025, 61(2): 21-30. |
| [8] | Jienan Ye,Yizhou Huang,Shuhao Jia,Ting Zhang. Identification of Ecological Sources and Construction of an Ecological Security Pattern in Bazhong, Sichuan Province [J]. Scientia Silvae Sinicae, 2025, 61(11): 56-69. |
| [9] | Ruyue Ma,Ruifu Wang,Xinhao Li,Yonglong Gao,Tong Su,Xiaoshuai Wei,Yun Tian,Peng Liu,Tianshan Zha. Net Ecosystem Carbon Exchange and Its Response to Main Environmental Factors in a Natural Deciduous Broad-Leaved Forest Ecosystem in Labagoumen, Beijing [J]. Scientia Silvae Sinicae, 2025, 61(10): 74-86. |
| [10] | Jing Xie,Feng Zhang,Zeyuan Zhou,Haiqun Yu,Yi Han,Chunxin Yang,Wei Jiang,Jinzu Liu,Boen Liu,He Liu. Seasonal Variations in Water Use Efficiency of Plantation Ecosystem in an Urban Park of Beijing [J]. Scientia Silvae Sinicae, 2024, 60(9): 12-17. |
| [11] | Jiaojun Zhu,G. Geoff Wang,Huaiqing Zhang,Tian Gao. On the Research of Climate-Smart Forestry [J]. Scientia Silvae Sinicae, 2024, 60(7): 1-7. |
| [12] | Yang Yang,Baorong Wang,Hui Sun,Yuanyuan Zhou,Jiangbo Qiao,Yi Song,Pingping Zhang,Zimin Li,Yunqiang Wang,Shaoshan An. Review of Soil Microbes Mediating Organic Carbon Conversion Process of the Earth Critical Zone [J]. Scientia Silvae Sinicae, 2024, 60(7): 165-174. |
| [13] | Xuejuan Bai,Guoqing Zhai,Jingze Liu. Application of 13C Stable Isotopes in Plant-Microbial-Soil Carbon Cycle in Terrestrial Ecosystem [J]. Scientia Silvae Sinicae, 2024, 60(7): 175-190. |
| [14] | Shirong Liu,Hui Wang,Haikui Li,Zhen Yu,Junwei Luan. Projections of China’s Forest Carbon Storage and Sequestration and Ways of Their Potential Capacity Enhancement [J]. Scientia Silvae Sinicae, 2024, 60(4): 157-172. |
| [15] | Zhao Zhuqi, Hu Zhenhong, He Xian, Huang Zhiqun. Research Progresses on the Dynamics of Microbial Community Establishment in Woody Debris [J]. Scientia Silvae Sinicae, 2024, 60(2): 106-117. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||