Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (6): 85-98.doi: 10.11707/j.1001-7488.LYKX20240612
• Research papers • Previous Articles Next Articles
Jiayu Chen,Zhehan Li,Pingxin Zhao,Xiaoyu Zhan,Yuanfan Ma,Futao Guo*()
Received:
2024-10-19
Online:
2025-06-10
Published:
2025-06-26
Contact:
Futao Guo
E-mail:guofutao@126.com
CLC Number:
Jiayu Chen,Zhehan Li,Pingxin Zhao,Xiaoyu Zhan,Yuanfan Ma,Futao Guo. Effects of Soil Physicochemical Properties on Emission Characteristics of Biogenic Volatile Organic Compounds from Cunninghamia lanceolata under Forest Fire Smoke Deposition[J]. Scientia Silvae Sinicae, 2025, 61(6): 85-98.
Fig.2
Effects of different smoke concentrations on the BVOCs emission rate of Cunninghamia lanceolata Smoke concentration:Single effect of smoke concentration on the BVOCs emission rate of C. lanceolata;Time:Single effect of different time points after smoke treatment on BVOCs emission rate of C. lanceolata;Smoke concentration + time:Interactive effect of smoke concentration and different time points after smoke treatment."
Fig.5
Effects of different smoke concentrations and different time points after smoke treatment on the soil physicochemical properties of 0–20 cm soil layer of Cunninghamia lanceolata Smoke concentration:Single effect of different smoke concentration treatments on soil soil physicochemical properties;Time:Single effect of different time points after smoke treatment on soil soil physicochemical properties;Smoke concentration + time:Interactive effect of smoke concentration and different time points after smoke treatment."
Fig.7
Schematic diagram of the structural equation between forest fire smoke concentration, BVOCs emission rate, and soil physicochemical properties In Figure a, the red arrow indicates a negative correlation between the two, and the blue arrow indicates a positive correlation. In Figure b: “S1” represents the soil property index in the 0–10 cm soil layer, “S2” represents the soil property index in the 10–20 cm soil layer; The red arrow indicates a significant negative correlation between the two, the blue arrow indicates a significant positive correlation, the gray line represents no significant correlation; The darker the arrow, the stronger the correlation between the two. In figures a and b: A one-way arrow indicates a one-way influence, and a two-way arrow indicates a mutual influence; pvalue, gfi, cfi, rmr, srmr, and rmsea are common model fitting indicators of structural equations, which are used to evaluate the goodness of fit and quality of the model( pvalue indicates the significance level, and pvalue >0.05 indicates that the model fits the data well; gfi and cfi are used to evaluate the goodness of model fit, and gfi ≥ 0.90 and cfi ≥ 0.90 indicate a good fit;rmr and srmr measure the size of the model residual, and the ideal value is close to 0;rmsea measures the quality of model fit, and rmsea ≤ 0.05 indicates an excellent fit, and 0.05-0.08 indicates an acceptable fit). *:P<0.05;**:P<0.01;***:P<0.001."
黄爱葵, 李 楠. 植物源挥发性有机物的生态意义 (综述). 亚热带植物科学, 2011, 40 (3): 81- 86. | |
Huang A K, Li N. The ecological significance of botanical volatile organic compounds. Subtropical Plant Science, 2011, 40 (3): 81- 86. | |
黄 娟, 莫江明, 孔国辉, 等. 植物源挥发性有机物对氮沉降响应研究展望. 生态学报, 2011, 31 (21): 6616- 6623. | |
Huang J, Mo J M, Kong G H, et al. Research perspective for the effects of nitrogen deposition on biogenic volatile organic compounds. Acta Ecologica Sinica, 2011, 31 (21): 6616- 6623. | |
倪荣新, 宋其岩, 吴英俊, 等. 木荷生物防火林带与杉木林可燃物数量比较研究. 浙江林业科技, 2015, 35 (1): 45- 48. | |
Ni R X, Song Q Y, Wu Y J, et al. Comparison on fuel load under Schima superba and Cunninghamia lanceolata stands. Journal of Zhejiang Forestry Science and Technology, 2015, 35 (1): 45- 48. | |
俞新妥. 2000. 中国杉木90年代的研究进展 Ⅰ. 杉木研究的特点及有关基础研究的综述. 福建林学院学报, (1): 87−96. | |
Yu X T. 2000. A summary of the studies on Chinese fir in 1990’s Ⅰ. The distinguishing features of chinese fir research and research development on basic research. Journal of Forest and Environment, (1): 87−96. [in Chinese] | |
朱忠盼, 郭雨萱, 魏 帽, 等. 可燃物化学性质对燃烧释放 PM2.5 元素成分的影响. 中国环境科学, 2022, 42 (5): 2050- 2059. | |
Zhu Z P, Guo Y X, Wei M, et al. Effects of chemical properties of fuel on the composition of PM2.5 released by combustion. China Environmental Science, 2022, 42 (5): 2050- 2059. | |
Adame J A, Lope L, Hidalgo P J, et al. Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain. Science of the Total Environment, 2018, 645, 710- 720.
doi: 10.1016/j.scitotenv.2018.07.181 |
|
Aydin Y M, Yaman B, Koca H, et al. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. Science of the Total Environment, 2014, 490, 239- 253.
doi: 10.1016/j.scitotenv.2014.04.132 |
|
Bodí M B, Martin D A, Balfour V N, et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 2014, 130, 103- 127.
doi: 10.1016/j.earscirev.2013.12.007 |
|
Bond W J, Keeley J E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 2005, 20 (7): 387- 394. | |
Davies S J, Unam L. Smoke-haze from the 1997 Indonesian forest fires: effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecology and Management, 1999, 124 (2/3): 137- 144. | |
Dudareva N, Klempien A, Muhlemann J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 2013, 198 (1): 16- 32.
doi: 10.1111/nph.12145 |
|
Feng X, Chen Y, Qi Y, et al. Nitrogen enhanced photosynthesis of Miscanthus by increasing stomatal conductance and phospho enol pyruvate carboxylase concentration. Photosynthetica, 2012, 50 (4): 577- 586.
doi: 10.1007/s11099-012-0061-3 |
|
Germon A, Laclau J, Robin A, et al. Tamm review: deep fine roots in forest ecosystems: why dig deeper?. Forest Ecology and Management, 2020, 466, 118- 135. | |
Gershenzon J. Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 1994, 20 (6): 1281- 1328.
doi: 10.1007/BF02059810 |
|
Gertini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143(1): 1−10. | |
Granged A J, Zavala L M, Jordán A, et al. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma, 2011, 164 (1/2): 85- 94. | |
Guenther A B, Jiang X, Heald C L, et al. 2012. The model of emissions of gases and aerosols from nature version 2.1 (megan2. 1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6): 1471-1492. | |
Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres, 1995, 100 (D5): 8873- 8892.
doi: 10.1029/94JD02950 |
|
Guo L, Ma Y, Tigabu M, et al. Emission of atmospheric pollutants during forest fire in boreal region of China. Environmental Pollution, 2020, 264, 114709.
doi: 10.1016/j.envpol.2020.114709 |
|
He W, Zhang M, Jin G, et al. Effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in a Korean pine plantation. Microbial Ecology, 2021, 81 (2): 410- 424.
doi: 10.1007/s00248-020-01595-6 |
|
Hu W, Tan J, Shi X, et al. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: a global meta-analysis. Journal of Soils and Sediments, 2022, 22 (10): 2608- 2619.
doi: 10.1007/s11368-022-03276-y |
|
Huang X, Lai J, Liu Y, et al. Biogenic volatile organic compound emissions from Pinus massoniana and Schima superba seedlings: their responses to foliar and soil application of nitrogen. Science of the Total Environment, 2020, 705, 135761.
doi: 10.1016/j.scitotenv.2019.135761 |
|
Iijima Y. Recent advances in the application of metabolomics to studies of biogenic volatile organic compounds (BVOC) produced by plant. Metabolites, 2014, 4 (3): 699- 721.
doi: 10.3390/metabo4030699 |
|
Iriti M, Faoro F. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences, 2009, 10 (8): 3371- 3399.
doi: 10.3390/ijms10083371 |
|
Jing X, Lun X, Fan C, et al. Emission patterns of biogenic volatile organic compounds from dominant forest species in Beijing, China. Journal of Environmental Sciences, 2020, 95, 73- 81.
doi: 10.1016/j.jes.2020.03.049 |
|
Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 1999, 33, 23- 88.
doi: 10.1023/A:1006127516791 |
|
Kobayashi K, Awai K, Nakamura M, et al. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. The Plant Journal, 2009, 57 (2): 322- 331.
doi: 10.1111/j.1365-313X.2008.03692.x |
|
Körner C. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 2006, 172 (3): 393- 411.
doi: 10.1111/j.1469-8137.2006.01886.x |
|
Li L, Bai G, Han H, et al. Localized biogenic volatile organic compound emission inventory in China: a comprehensive review. Journal of Environmental Management, 2024, 353, 120121.
doi: 10.1016/j.jenvman.2024.120121 |
|
Loreto F, Centritto M, Barta C, et al. 2007. The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L. ) leaves. Plant, Cell & Environment, 30(5): 662−669. | |
Loreto F, Schnitzler J. Abiotic stresses and induced BVOCs. Trends in Plant Science, 2010, 15 (3): 154- 166.
doi: 10.1016/j.tplants.2009.12.006 |
|
Marais E A, Jacob D J, Jimenez J L, et al. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls. Atmospheric Chemistry and Physics, 2016, 16 (3): 1603- 1618.
doi: 10.5194/acp-16-1603-2016 |
|
Mclauchlan K K, Higuera P E, Miesel J, et al. Fire as a fundamental ecological process: research advances and frontiers. Journal of Ecology, 2020, 108 (5): 2047- 2069.
doi: 10.1111/1365-2745.13403 |
|
Mohanty S, Grimm B, Tripathy B C. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta, 2006, 224 (3): 692- 699.
doi: 10.1007/s00425-006-0248-6 |
|
Niinemets Ü, Seufert G, Steinbrecher R, et al. A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytologist, 2002, 153 (2): 257- 275.
doi: 10.1046/j.0028-646X.2001.00324.x |
|
Nizhelskiy M S, Kazeev K S, Vilkova V V, et al. Effect of smoke caused by fires on the enzymatic activity of forest soils in the North Caucasus (Russian Federation). Soil Systems, 2023, 7 (3): 77.
doi: 10.3390/soilsystems7030077 |
|
Okoshi R, Rasheed A, Reddy G C, et al. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires. Atmospheric Environment, 2014, 89, 392- 402.
doi: 10.1016/j.atmosenv.2014.01.024 |
|
Ormeño E, Baldy V, Ballini C, et al. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients. Journal of chemical ecology, 2008, 34, 1219- 1229.
doi: 10.1007/s10886-008-9515-2 |
|
Ormeño E, Fernandez C. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Current Bioactive Compounds, 2012, 8 (1): 71- 79.
doi: 10.2174/157340712799828188 |
|
Owen S M, Peñuelas J. Response to Firn and Jones: volatile isoprenoids, a special case of secondary metabolism. Trends in Plant Science, 2006, 11 (3): 113- 114.
doi: 10.1016/j.tplants.2006.01.002 |
|
Peñuelas J, Llusià J. BVOCs: plant defense against climate warming?. Trends in Plant Science, 2003, 8 (3): 105- 109.
doi: 10.1016/S1360-1385(03)00008-6 |
|
Peñuelas J, Staudt M. BVOCs and global change. Trends in Plant Science, 2010, 15 (3): 133- 144.
doi: 10.1016/j.tplants.2009.12.005 |
|
Pereira P, úbeda X, Martin D, et al. Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 2014, 28 (11): 3681- 3690.
doi: 10.1002/hyp.9907 |
|
Pietri J A, Brookes P C. Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biology and Biochemistry, 2008, 40 (3): 797- 802.
doi: 10.1016/j.soilbio.2007.10.014 |
|
Ren Y, Qu Z, Du Y, et al. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies. Environmental Pollution, 2017, 230, 849- 861.
doi: 10.1016/j.envpol.2017.06.049 |
|
Silver G M, Fall R. Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiology, 1991, 97 (4): 1588- 1591.
doi: 10.1104/pp.97.4.1588 |
|
Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11 (11): 1252- 1264.
doi: 10.1111/j.1461-0248.2008.01245.x |
|
Siwko M E, Marrink S J, de Vries A H, et al. Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochimica Et Biophysica Acta (BBA)-Biomembranes, 2007, 1768 (2): 198- 206.
doi: 10.1016/j.bbamem.2006.09.023 |
|
Stohl A, Berg T, Burkhart J F, et al. Arctic smoke–record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics, 2007, 7 (2): 511- 534.
doi: 10.5194/acp-7-511-2007 |
|
Úbeda X, Lorca M, Outeiro L R, et al. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). International Journal of Wildland Fire, 2005, 14 (4): 379- 384.
doi: 10.1071/WF05040 |
|
Vega J A, Fontúrbel T, Merino A, et al. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant and Soil, 2013, 369 (1/2): 73- 91. | |
Wan P, Zhao X, Ou Z, et al. Forest management practices change topsoil carbon pools and their stability. Science of The Total Environment, 2023, 902, 166093.
doi: 10.1016/j.scitotenv.2023.166093 |
|
Wu J, Zhu J, Li W, et al. Estimation of the PM2.5 health effects in China during 2000-2011. Environmental Science and Pollution Research, 2017, 24 (11): 10695- 10707.
doi: 10.1007/s11356-017-8673-6 |
|
Xu L, Guo H, Boyd C M, et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences, 2015, 112 (1): 37- 42.
doi: 10.1073/pnas.1417609112 |
|
Yang W, Zhang B, Wu Y, et al. Effects of soil drought and nitrogen deposition on BVOC emissions and their O3 and SOA formation for Pinus thunbergii. Environmental Pollution, 2023, 316, 120693.
doi: 10.1016/j.envpol.2022.120693 |
|
Yang X, Ma Y, Wang G, et al. Characterization of pollutants emitted during burning of eight main tree species in subtropical China. Atmospheric Environment, 2019, 215, 116899.
doi: 10.1016/j.atmosenv.2019.116899 |
|
Zhan X, Huang Z, Tigabu M, et al. 2025. Plants can directly absorb carbon derived from deposition of wildfire smoke. Plant and Soil, 1−15. | |
Zhang C, Guo H, Huang H, et al. Atmospheric nitrogen deposition and its responses to anthropogenic emissions in a global hotspot region. Atmospheric Research, 2021b, 248, 105137.
doi: 10.1016/j.atmosres.2020.105137 |
|
Zhang M, Wang W, Tang L, et al. Impacts of prescribed burning on urban forest soil: minor changes in net greenhouse gas emissions despite evident alterations of microbial community structures. Applied Soil Ecology, 2021a, 158, 103780.
doi: 10.1016/j.apsoil.2020.103780 |
|
Zhu Z, Ma Y, Tigabu M, et al. Effects of forest fire smoke deposition on soil physico-chemical properties and bacterial community. Science of the Total Environment, 2024, 909, 168592.
doi: 10.1016/j.scitotenv.2023.168592 |
[1] | Mingtong Liu,Hebi Zhuang,Zitong Wang,Shuaibin Shi,Xiaojuan Liu,Erpei Lin,Xiange Hu,Huahong Huang. Biological Functional Analysis of Transcription Factor Gene ClNAC40 Regulating Secondary Cell Wall Development in Cunninghamia lanceolata [J]. Scientia Silvae Sinicae, 2025, 61(2): 131-141. |
[2] | Jiang He,Lin Qin. Climate-Sensitive Tree Recruitment Model for Natural Cunninghamia lanceolata Forests [J]. Scientia Silvae Sinicae, 2025, 61(1): 70-80. |
[3] | Shuya Yang,Jingru Wang,Yingying Zhu,Lita Yi,Meihua Liu. Effects of Mixed Plantation of Cunninghamia lanceolata and Phoebe chekiangensis on Root Exudates and Community Structure of Arbuscular Mycorrhizal Fungi [J]. Scientia Silvae Sinicae, 2024, 60(9): 59-68. |
[4] | Linxin Li,Guiyun Yang,Haolan Guo,Qiang Dong,Ming Li,Xiangqing Ma,Pengfei Wu. Effects of Propagation Methods on Biomass, Morphological Traits and Carbon and Nitrogen Contents of Fine Roots at Different Orders of Chinese Fir Seedlings [J]. Scientia Silvae Sinicae, 2024, 60(7): 47-55. |
[5] | Yingchao Ruan, Rexitahong Subi,Xi Lin,Ming Li,Shaohui Fan,Suiqi Feng,Zhiyun Chen,Xiangqing Ma,Zongming He. Effects of Pruning Intensity on the Formation and Quality of Clear Wood of Trees in Cunninghamia lanceolata Plantations [J]. Scientia Silvae Sinicae, 2024, 60(6): 50-59. |
[6] | Hui Jia,Min Zhu,Zaipeng Yu,Xiaohua Wan,Yanrong Fu,Sirong Wang,Bingzhang Zou,Zhiqun Huang. Relationship between Litter Production, Litter Turnover Period and Leaf Traits of Different Tree Species in Subtropical Young Afforested Land [J]. Scientia Silvae Sinicae, 2024, 60(1): 12-18. |
[7] | Zhuhua Wu,Juan Song,Shulin Zhu,Xing Zhao,Xuexiang Yang,Jiahong Ren,Fengmao Chen. Effects of Plant Growth-Promoting Microorganisms on Rhizosphere Microbial Community and the Leaf Pigment Composition of Liquidambar formosana [J]. Scientia Silvae Sinicae, 2023, 59(12): 125-136. |
[8] | Wenfei Zhao,Xiaoyu Cao,Zhengchang Xie,Yifan Pang,Yaping Sun,Jiping Li,Yongjun Mo,Da Yuan. Evaluation of Stand Spatial Structure of Cunninghamia lanceolata Public Welfare Forest by Using Structural Equation Model [J]. Scientia Silvae Sinicae, 2022, 58(8): 76-88. |
[9] | Zhouyang Li,Wenling Lu,Wang Qian,Yizi Huang,Erpei Lin,Huahong Huang,Zaikang Tong. Biological Characteristics and Response to Aluminum Stress of Root Border Cells in Cunninghamia lanceolata and Their Response to Aluminum Stress [J]. Scientia Silvae Sinicae, 2022, 58(7): 73-81. |
[10] | Sha Zhou,Huanfei Ma,Jieying Wang,Chengjie Ren,Yaoxin Guo,Jun Wang,Fazhu Zhao. Latitudinal Distribution of Forest Soil Microbial Biomass Carbon and Its Affecting Factors in China [J]. Scientia Silvae Sinicae, 2022, 58(2): 49-57. |
[11] | Wenjie Hu,Hongdong Pang,Xingyi Hu,Faxin Huang,Jiawei Yang,Lijun Xu,Miao Gong. Effects of Bamboo Forest Density and Fertilizer Types on the Yield and Quality of Phyllostachys edulis Bamboo Shoots and Soil Physicochemical Properties in Mufu Mountain Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 32-42. |
[12] | Wenjun Hou,Ming Zou,Baofu Li,Yuanchun Yu. Effect of Glyphosate on Soil Physicochemical Properties of Eucalyptus Plantations [J]. Scientia Silvae Sinicae, 2020, 56(8): 20-26. |
[13] | Xiaoli Yan, Wenjia Hu, Yuanfan Ma, yufan Huo, Tuo Wang, Xiangqing Ma. Nitrogen Uptake Preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under Heterogeneous Nitrogen Supply Environment and their Root Foraging Strategies [J]. Scientia Silvae Sinicae, 2020, 56(2): 1-11. |
[14] | Xia Li,Libao Wang,Yafeng Wen,Jun Lin,Xingtong Wu,Meiling Yuan,Yuan Zhang,Minqiu Wang,Xinyu Li. Genetic Diversity of Chinese Fir (Cunninghamia lanceolata) Breeding Populations among Different Generations [J]. Scientia Silvae Sinicae, 2020, 56(11): 53-61. |
[15] | Hu Huaying, Zhang Hong, Cao Sheng, Yin Danyang, Zhou Chuifan, He Zongming. Effects of Biochar Application on Soil Bacterial Community Structure and Diversity in Cunninghamia lanceolata Plantations [J]. Scientia Silvae Sinicae, 2019, 55(8): 184-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||