Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 70-80.doi: 10.11707/j.1001-7488.LYKX20230538
• Research papers • Previous Articles Next Articles
Received:
2023-11-13
Online:
2025-01-25
Published:
2025-02-09
Contact:
Lin Qin
E-mail:nilniq@163.com
CLC Number:
Jiang He,Lin Qin. Climate-Sensitive Tree Recruitment Model for Natural Cunninghamia lanceolata Forests[J]. Scientia Silvae Sinicae, 2025, 61(1): 70-80.
Table 1
Statistics of main stand variables of sample plots for Chinese fir"
变量 Variables | 变量符号 Variable symbol | 最小值 Min. | 最大值 Max. | 平均值 Mean | 标准差 Std. |
单木所属树种的胸高断面积 Basal area of the tree species/m2 | Bai | 0 | 1.63 | 0.16 | 0.23 |
林分平均年龄Mean age/a | A | 2 | 79 | 20.19 | 9.91 |
林分平均胸径Quadratic mean diameter/cm | Dg | 6.30 | 21.70 | 11.60 | 2.86 |
林分断面积Basal area /(m2·hm?2) | BA | 1.51 | 40.33 | 10.87 | 6.91 |
林分密度Stand density/(trees·hm?2) | NT | 149.93 | 3 523.24 | 1 015.75 | 541.34 |
海拔Elevation/m | EL | 23 | 478.98 | 292.98 | |
坡度Slope /(°) | SL | 0 | 60 | 27.46 | 10.61 |
土层厚度Soil thickness/cm | ST | 8 | 150 | 62.35 | 20.85 |
腐殖质厚度Humus thickness/cm | HT | 0 | 52 | 5.80 | 6.21 |
Table 2
Description and statistics of climate variables"
变量名称Variable | 描述 Description | 最小值 Min. | 最大值 Max. | 平均值 Mean | 标准差 Std. |
MAT | 年均气温Mean annual temperature/℃ | 11.52 | 19.28 | 17.01 | 1.17 |
MWMT | 最热月平均气温Mean warmest month temperature/℃ | 22.22 | 30.90 | 27.75 | 1.59 |
MCMT | 最冷月平均气温Mean coldest month temperature/℃ | ?0.88 | 7.62 | 4.48 | 1.02 |
TD | 平均温差Temperature difference between MWMT and MCMT/℃ | 17.98 | 25.72 | 23.27 | 1.21 |
MAP | 年均降水量Mean annual precipitation/℃ | 1 045.40 | 2 371.20 | 1 439.79 | 197.48 |
AHM | 湿热指数Annual heat:moisture index (MAT+10)/(MAP/1 000) | 11.08 | 26.10 | 19.54 | 2.71 |
DD_0 | 0 ℃以下天数Degree-days below 0 ℃, chilling degree-days/d | 1.80 | 98.00 | 9.61 | 9.00 |
DD5 | 5 ℃以上天数Degree-days above 5 ℃, growing degree-days/d | 2 810.80 | 5 193.00 | 4 437.81 | 381.34 |
DD_18 | 18 °C以下天数Degree-days below 18 ℃, heating degree-days/d | 1 074.80 | 2 709.40 | 1 511.71 | 208.85 |
DD18 | 18 °C以上天数Degree-days above 18 ℃, cooling degree-days/d | 346.80 | 1 615.40 | 1 152.86 | 232.15 |
NFFD | 无霜期天数The number of frost-free days/d | 274.80 | 354.40 | 339.35 | 8.97 |
PAS | 上一年8月至当年7月间的降雪量 Precipitation as snow between August in previous year and July in current year/mm | 1.80 | 59.80 | 6.21 | 5.24 |
EMT | 30年来的极端低温Extreme minimum temperature over 30 years/℃ | ?11.10 | ?0.60 | ?3.97 | 1.46 |
EXT | 30年来的极端高温Extreme maximum temperature over 30 years/℃ | 30.50 | 37.80 | 35.78 | 1.13 |
Eref | 哈格里夫降水指数Hargreaves reference evaporation | 855.40 | 1 329.60 | 1 167.90 | 58.05 |
CMD | 哈格里夫水分缺失指数Hargreaves climatic moisture deficit | 25.80 | 331.40 | 195.44 | 55.70 |
Table 3
Parameter estimates and fit statistics of the basic models for fir recruitment"
参数Parameter | NB模型 NB model | ZIP模型 ZIP model | ZINB模型 ZINB model | HP模型 HP model | HNB模型 HNB model | |
计数部分 Count component | 截距Intercept | ?11.138 (3.602**) | ?10.980 (0.880***) | ?11.080 (3.226***) | ?10.980 (0.880***) | ?13.129 (3.809***) |
Bai | 2.486 (0.307***) | 0.324 (0.065***) | 0.707 (0.294*) | 0.321 (0.065***) | 0.416 (0.322) | |
ST | 0.016 (0.003***) | 0.006 (0.001***) | 0.012 (0.004***) | 0.006 (0.001***) | 0.011 (0.004*) | |
ln(EL) | ?0.555 (0.109***) | ?0.361 (0.026***) | ?0.551 (0.110***) | ?0.360 (0.026***) | ?0.464 (0.126***) | |
ln(MAP) | 1.970 (0.518***) | 2.023 (0.125***) | 2.082 (0.453***) | 2.023 (0.125***) | 2.303 (0.532***) | |
log(θ) | ?0.673 (0.074***) | ?0.850 (0.203***) | ||||
零部分 Zero component | 截距Intercept | ?0.027 (0.072***) | 1.713 (0.220***) | 0.020 (0.071) | ?1.247 (0.249***) | |
Bai | ?376.290 (114.996**) | 4.752 (0.580***) | ||||
ST | 0.011 (0.004**) | |||||
AIC | 3 375.47 | 5 845.79 | 3 135.69 | 5 846.55 | 3 305.60 | |
BIC | 3 403.46 | 5 873.77 | 3 173.01 | 5 874.53 | 3 347.58 | |
logLik | ?1 681.74 (df=6) | ?2 916.89 (df=6) | ?1 559.85 (df=8) | ?2 917.27 (df=6) | ?1 643.80 (df=9) |
Table 4
Parameter estimates and fit statistics of the mixed-effects models for Chinese fir recruitment"
参数 Parameter | NB混合效应模型 NB generalised nonlinear mixed-effects model | ZIP混合效应模型 ZIP generalised nonlinear mixed-effects model | ZINB混合效应模型 ZINB generalised nonlinear mixed-effects model | HP混合效应模型 HP generalised nonlinear mixed-effects model | HNB混合效应模型 HNB generalised nonlinear mixed-effects model | |
计数部分 Count component | 截距Intercept | ?9.552 (4.646*) | ?2.093 (2.046) | ?10.059 (3.880**) | ?2.294 (1.995) | ?12.969 (4.066**) |
Bai | 2.559 (0.448***) | 0.251 (0.072***) | 0.744 (0.298*) | 0.235 (0.072**) | 0.441 (0.323) | |
ST | 0.014 (0.004**) | 0.004 (0.001**) | 0.010 (0.004**) | 0.004 (0.001**) | 0.010 (0.005*) | |
ln(EL) | ?0.436 (0.149**) | ?0.164 (0.059**) | ?0.533 (0.127***) | ?0.165 (0.058**) | ?0.449 (0.135***) | |
ln(MAP) | 1.651 (0.688*) | 0.628 (0.316*) | 1.935 (0.561***) | 0.665 (0.308*) | 2.272 (0.576***) | |
零部分 Zero component | 截距Intercept | -0.076 (0.074) | 1.712 (0.219***) | -0.020 (0.071) | 1.247 (0.249***) | |
Bai | ?385.152 (117.560**) | ?4.752 (0.580***) | ||||
ST | ?0.011 (0.004**) | |||||
σ2 | 0.227 | 0.302 | 0.091 | 0.258 | 0.031 | |
AIC | 3 366.42 | 5 480.53 | 3 133.31 | 5 489.88 | 3 307.25 | |
BIC | 3 399.07 | 5 513.19 | 3 175.29 | 5 522.53 | 3 353.90 | |
logLik | ?1 676.21 (df=7) | ?2 733.27 (df=7) | ?1 557.66 (df=9) | ?2 737.94 (df=7) | ?1 643.63 (df=10) | |
χ2 | 11.05*** | 367.25*** | 4.38* | 358.67*** | 0.35 |
郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建. 南京林业大学学报(自然科学版), 2023, 47 (1): 47- 56. | |
Guo C Y, Guo H X, Wang B H. Study on increment model of individual-tree diameter of Cunninghamia lanceolata in consideration of climatic factors. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47 (1): 47- 56. | |
雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响. 林业科学, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
Lei X D, Lu Y C, Zhang H R, et al. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis. Scientia Silvae Sinicae, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
李春明, 李利学. 基于零膨胀模型及混合效应模型相结合的蒙古栎林林木进界模拟研究. 北京林业大学学报, 2020, 42 (6): 59- 67.
doi: 10.12171/j.1000-1522.20190216 |
|
Li C M, Li L X. Simulating study on tree recruitment of Quercus mongolica based on zero-inflated model and mixed effect model methods. Journal of Beijing Forestry University, 2020, 42 (6): 59- 67.
doi: 10.12171/j.1000-1522.20190216 |
|
马 武, 雷相东, 徐 光, 等. 蒙古栎天然林生长模型的研究——Ⅳ. 进界生长模型. 西北农林科技大学学报(自然科学版), 2015, 43 (5): 58- 64. | |
Ma W, Lei X D, Xu G, et al. Growth models for natural Mongolian oak forests—Ⅳ. Recruitment model. Journal of Northwest A & F University (Natural Science Edition), 2015, 43 (5): 58- 64. | |
张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型. 应用生态学报, 2017, 28 (6): 1851- 1859. | |
Zhang H P, Li F R, Dong L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors. Chinese Journal of Applied Ecology, 2017, 28 (6): 1851- 1859. | |
张晓红, 张会儒, 卢 军, 等. 目标树抚育间伐对蒙古栎天然次生林生长的初期影响. 林业科学, 2020, 56 (10): 83- 92.
doi: 10.11707/j.1001-7488.20201009 |
|
Zhang X H, Zhang H R, Lu J, et al. Early effects of crop tree release tending on growth of natural secondary Quercus mongolica forest. Scientia Silvae Sinicae, 2020, 56 (10): 83- 92.
doi: 10.11707/j.1001-7488.20201009 |
|
祝子枭, 刘兆刚, 董灵波, 等. 环境因子对大兴安岭天然落叶松次生林主要树种更新的影响. 东北林业大学学报, 2020, 48 (6): 135- 141.
doi: 10.3969/j.issn.1000-5382.2020.06.026 |
|
Zhu Z X, Liu Z G, Dong L B, et al. Effects of environmental factors on regeneration of major species in larch secondary forest of Daxing’an Mountains. Journal of Northeast Forestry University, 2020, 48 (6): 135- 141.
doi: 10.3969/j.issn.1000-5382.2020.06.026 |
|
Adame P, del Rìo M, Cañellas I. Ingrowth model for Pyrenean oak stands in north-western Spain using continuous forest inventory data. European Journal of Forest Research, 2010, 129 (4): 669- 678.
doi: 10.1007/s10342-010-0368-1 |
|
Affleck D L. Poisson mixture models for regression analysis of stand-level mortality. Canadian Journal of Forest Research, 2006, 36 (11): 2994- 3006.
doi: 10.1139/x06-189 |
|
Anderson D R. 2008. Model based inference in the life sciences: a primer on evidence. New York, NY: Springer Science & Business Media. | |
Barry S C, Welsh A H. Generalized additive modelling and zero inflated count data. Ecological Modelling, 2002, 157 (2/3): 179- 188. | |
Boswell M T, Patil G P. Chance mechanisms generating the negative binomial distributions. Random Counts in Scientific Work, 1970, 1, 3- 22. | |
Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth. The Journal of Ecology, 1972, 60 (3): 849- 872.
doi: 10.2307/2258570 |
|
Cunningham R B, Lindenmayer D B. Modeling count data of rare species: some statistical issues. Ecology, 2005, 86 (5): 1135- 1142.
doi: 10.1890/04-0589 |
|
Fortin M, Bedard S, DeBlois J, et al. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada. Annals of Forest Science, 2008, 65 (2): 205/1- 205/11. | |
Gregorie T G. Generalized error structure for forestry yield models. Forest Science, 1987, 33 (2): 423- 444.
doi: 10.1093/forestscience/33.2.423 |
|
Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25 (15): 1965- 1978.
doi: 10.1002/joc.1276 |
|
Kangas A, Maltamo M. 2006. Forest inventory. Dordrecht: Springer. | |
Karazsia B T, van Dulmen M H M. Regression models for count data: illustrations using longitudinal predictors of childhood injury. Journal of Pediatric Psychology, 2008, 33 (10): 1076- 1084.
doi: 10.1093/jpepsy/jsn055 |
|
Kunstler G, Thuiller W, Curt T, et al. Fagus sylvatica L. recruitment across a fragmented Mediterranean Landscape, importance of long distance effective dispersal, abiotic conditions and biotic interactions. Diversity and Distributions, 2007, 13 (6): 799- 807.
doi: 10.1111/j.1472-4642.2007.00404.x |
|
Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 1992, 34 (1): 1- 14.
doi: 10.2307/1269547 |
|
Lenoir J, Gégout J C, Pierrat J C, et al. Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986—2006). Ecography, 2009, 32 (5): 765- 777.
doi: 10.1111/j.1600-0587.2009.05791.x |
|
Lexerød N L. Recruitment models for different tree species in Norway. Forest Ecology and Management, 2005, 206 (1/2/3): 91- 108. | |
Li R X, Weiskittel A R, Kershaw J A Jr. Modeling annualized occurrence, frequency, and composition of in growth using mixed-effects zero-inflated models and permanent plots in the Acadian forest region of north America. Canadian Journal of Forest Research, 2011, 41 (10): 2077- 2089.
doi: 10.1139/x11-117 |
|
Liu W S, Cela J. 2008. Count data models in SAS. Journal of the American Medical Informatics Association, doi:10.1136/amiajnl-2013-001804. | |
Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics, 1986, 33 (3): 341- 365.
doi: 10.1016/0304-4076(86)90002-3 |
|
Peñuelas J, Ogaya R, Boada M, et al. Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography, 2007, 30 (6): 829- 837.
doi: 10.1111/j.2007.0906-7590.05247.x |
|
Quan N T. The prediction sum of squares as a general measure for regression diagnostics. Journal of Business & Economic Statistics, 1988, 6 (4): 501- 504. | |
Russell M B, Westfall J A, Woodall C W. Modeling browse impacts on sapling and tree recruitment across forests in the northern United States. Canadian Journal of Forest Research, 2017, 47 (11): 1474- 1481.
doi: 10.1139/cjfr-2017-0155 |
|
Sagnard F, Pichot C, Dreyfus P, et al. Modelling seed dispersal to predict seedling recruitment: Recolonization dynamics in a plantation forest. Ecological Modelling, 2007, 203 (3/4): 464- 474. | |
Shifley S R, Ek A R, Burk T E. A generalized methodology for estimating forest in growth at multiple threshold diameters. Forest Science, 1993, 39 (4): 776- 798.
doi: 10.1093/forestscience/39.4.776 |
|
Shifley S R, Fan Z F, Kabrick J M, et al. Oak mortality risk factors and mortality estimation. Forest Ecology and Management, 2006, 229 (1/2/3): 16- 26. | |
Vanclay J K. Modelling regeneration and recruitment in a tropical rain forest. Canadian Journal of Forest Research, 1992, 22 (9): 1235- 1248.
doi: 10.1139/x92-165 |
|
Vanclay J K. Synthesis: growth models for tropical forests: a synthesis of models and methods. Forest Science, 1995, 41 (1): 7- 42.
doi: 10.1093/forestscience/41.1.7 |
|
Vuong Q H. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 1989, 57, 307- 333.
doi: 10.2307/1912557 |
|
Wang T L, Wang G Y, Innes J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 2017, 4 (4): 448- 458.
doi: 10.15302/J-FASE-2017172 |
|
Wang W W, Chen X Y, Zeng W S, et al. Development of a mixed-effects individual-tree basal area increment model for oaks (Quercus spp. ) considering forest structural diversity. Forests, 2019, 10 (6): 474.
doi: 10.3390/f10060474 |
|
Wang W W, Wang J J, Meng J H. A climate-sensitive mixed-effects tree recruitment model for oaks (Quercus spp. ) in Hunan Province, south-central China. Forest Ecology and Management, 2023, 528, 120631.
doi: 10.1016/j.foreco.2022.120631 |
|
Xiang W, Lei X D, Zhang X Q. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. Forest Ecology and Management, 2016, 382, 100- 109.
doi: 10.1016/j.foreco.2016.09.050 |
|
Yang Y Q, Huang S. Two-stage ingrowth models for four major tree species in Alberta. European Journal of Forest Research, 2015, 134 (6): 991- 1004.
doi: 10.1007/s10342-015-0904-0 |
|
Zeileis A, Kleiber C, Jackman S. Regression models for count data inR. Journal of Statistical Software, 2008, 27 (8): 1- 25. | |
Zell J, Rohner B, Thürig E, et al. Modeling ingrowth for empirical forest prediction systems. Forest Ecology and Management, 2019, 433, 771- 779.
doi: 10.1016/j.foreco.2018.11.052 |
|
Zhang X Q, Chhin S, Fu L Y, et al. Climate-sensitive tree height-diameter allometry for Chinese fir in southern China. Forestry: an International Journal of Forest Research, 2019, 92 (2): 167- 176.
doi: 10.1093/forestry/cpy043 |
|
Zhang X Q, Lei Y C, Cai D X, et al. Predicting tree recruitment with negative binomial mixture models. Forest Ecology and Management, 2012, 270, 209- 215.
doi: 10.1016/j.foreco.2012.01.028 |
[1] | Shuya Yang,Jingru Wang,Yingying Zhu,Lita Yi,Meihua Liu. Effects of Mixed Plantation of Cunninghamia lanceolata and Phoebe chekiangensis on Root Exudates and Community Structure of Arbuscular Mycorrhizal Fungi [J]. Scientia Silvae Sinicae, 2024, 60(9): 59-68. |
[2] | Linxin Li,Guiyun Yang,Haolan Guo,Qiang Dong,Ming Li,Xiangqing Ma,Pengfei Wu. Effects of Propagation Methods on Biomass, Morphological Traits and Carbon and Nitrogen Contents of Fine Roots at Different Orders of Chinese Fir Seedlings [J]. Scientia Silvae Sinicae, 2024, 60(7): 47-55. |
[3] | Yingchao Ruan, Rexitahong Subi,Xi Lin,Ming Li,Shaohui Fan,Suiqi Feng,Zhiyun Chen,Xiangqing Ma,Zongming He. Effects of Pruning Intensity on the Formation and Quality of Clear Wood of Trees in Cunninghamia lanceolata Plantations [J]. Scientia Silvae Sinicae, 2024, 60(6): 50-59. |
[4] | Hui Jia,Min Zhu,Zaipeng Yu,Xiaohua Wan,Yanrong Fu,Sirong Wang,Bingzhang Zou,Zhiqun Huang. Relationship between Litter Production, Litter Turnover Period and Leaf Traits of Different Tree Species in Subtropical Young Afforested Land [J]. Scientia Silvae Sinicae, 2024, 60(1): 12-18. |
[5] | Wenfei Zhao,Xiaoyu Cao,Zhengchang Xie,Yifan Pang,Yaping Sun,Jiping Li,Yongjun Mo,Da Yuan. Evaluation of Stand Spatial Structure of Cunninghamia lanceolata Public Welfare Forest by Using Structural Equation Model [J]. Scientia Silvae Sinicae, 2022, 58(8): 76-88. |
[6] | Zhouyang Li,Wenling Lu,Wang Qian,Yizi Huang,Erpei Lin,Huahong Huang,Zaikang Tong. Biological Characteristics and Response to Aluminum Stress of Root Border Cells in Cunninghamia lanceolata and Their Response to Aluminum Stress [J]. Scientia Silvae Sinicae, 2022, 58(7): 73-81. |
[7] | Zeyu Zhou,Linyan Feng,Xingrong Yan,Xiaofang Zhang,Xuping Yang,Liyong Fu,Huiru Zhang. Prediction Model of Stand Mortality of Larix principis-rupprechtii Plantation in the Core Area of Winter Olympic Games [J]. Scientia Silvae Sinicae, 2022, 58(10): 67-78. |
[8] | Shuai Liu,Jianjun Li,Dongsheng Qing,Kaiwen Zhu,Zhenyan Ma. A Climate-Sensitive Individual-Tree DBH Growth Model for Cyclobalanopsis glauca [J]. Scientia Silvae Sinicae, 2021, 57(1): 95-104. |
[9] | Xiaoli Yan, Wenjia Hu, Yuanfan Ma, yufan Huo, Tuo Wang, Xiangqing Ma. Nitrogen Uptake Preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under Heterogeneous Nitrogen Supply Environment and their Root Foraging Strategies [J]. Scientia Silvae Sinicae, 2020, 56(2): 1-11. |
[10] | Xia Li,Libao Wang,Yafeng Wen,Jun Lin,Xingtong Wu,Meiling Yuan,Yuan Zhang,Minqiu Wang,Xinyu Li. Genetic Diversity of Chinese Fir (Cunninghamia lanceolata) Breeding Populations among Different Generations [J]. Scientia Silvae Sinicae, 2020, 56(11): 53-61. |
[11] | Zheng Conghui, Zhang Hongjing, Wang Yuzhong, Dai Jianfeng, Dang Lei, Du Zichun, Liu Jianting, Gao Yunru. An Analysis of a Regional Trial of Larix principis-rupprechtii Families Based on BLUP and GGE Biplot [J]. Scientia Silvae Sinicae, 2019, 55(8): 73-83. |
[12] | Hu Huaying, Zhang Hong, Cao Sheng, Yin Danyang, Zhou Chuifan, He Zongming. Effects of Biochar Application on Soil Bacterial Community Structure and Diversity in Cunninghamia lanceolata Plantations [J]. Scientia Silvae Sinicae, 2019, 55(8): 184-193. |
[13] | Wu Zhilong, Zhou Chengjun, Zhou Xinnian, Liu Fuwan, Zhu Qixiong, Huang Jinyong, Chen Wen. Difference in Soil Respiration Rates of the Mixed Plantations of Cunninghamia lanceolata and Broadleaved Trees 5 Years after Harvesting at Different Intensities [J]. Scientia Silvae Sinicae, 2019, 55(6): 142-149. |
[14] | Yin Shuyan, Li Bo, Zhou Chenggang, Zhang Weiguang, Xie Lixia, Liu Yongjie. Analysis on Species Differentiation of Oligonychus ununguis on Castanea mollissima and Cunninghamia lanceolata based on 28S rDNA Gene Sequences [J]. Scientia Silvae Sinicae, 2019, 55(4): 122-128. |
[15] | Chunming Li,Lifang Zhao,Lixue Li. Modeling Stand-Level Mortality of Mongolian Oak(Quercus mongolica)Based on Mixed Effect Model and Zero-Inflated Model Methods [J]. Scientia Silvae Sinicae, 2019, 55(11): 27-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||