Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 1-9.doi: 10.11707/j.1001-7488.LYKX20240749
• Invited reviews • Previous Articles Next Articles
Xiang Hao1,Qiang Xia1,Wei Li2,Feng Peng1,*(
)
Received:2024-12-06
Online:2025-01-25
Published:2025-02-09
Contact:
Feng Peng
E-mail:fengpeng@bjfu.edu.cn
CLC Number:
Xiang Hao,Qiang Xia,Wei Li,Feng Peng. Structure, Preparation and Application of Xylan Nanocrystals[J]. Scientia Silvae Sinicae, 2025, 61(1): 1-9.
Fig.1
Chemical structure of xylan and morphology of its nanocrystal A.Common structures of hemicellulose in hardwood, softwood and grain, as well as the chemical structure of crystalline hemicellulose; B. Schematic of hemicellulose hydrate nanocrystals; C. Typical transmission electron microscopy image of hemicellulose nanohydrate crystal; D. Atomic force microscopy image of the xylan/DMSO co-crystal."
Table 1
Preparation and structure of the xylan nanocrystals"
| 起始材料 Starting material | 制备方法 Preparation method | 反应条件 Reaction condition | 纳米聚木糖 产率 Nanoxylan yield (%) | 纳米聚木糖 尺寸 Nanoxylan dimension | 纳米聚木糖 形状 Nanoxylan shape | 聚合度 Degree of polymeri- zation (DP) | 参考文献 Reference |
| 碱提取的结晶聚木糖 Alkali-extracted crystalline xylan | 碱性过硫酸铵氧化和随后的超声处理Alkaline ammonium persulfate oxidation followed by ultrasonication | 60 ℃,12 h | 15~20 | 30~50 nm | 片状Lamellar | 180~210 | |
| 碱提取的结晶聚木糖 Alkali-extracted crystalline xylan | 碱性高碘酸盐氧化和随后的超声处理Alkaline periodate oxidation followed by ultrasonication | 25 ℃,72 h | 30~40 | 30~80 nm | 片状Lamellar | 180~210 | |
| 碱提取的结晶聚木糖 Alkali-extracted crystalline xylan | 溶于四乙基氢氧化铵并加水再生Dissolved in tetraethylammonium hydroxide and regenerated by adding water | 50 ℃,15 h | 12~18 | 60~70 nm | 片状Lamellar | 180~210 | |
| 碱提取的结晶聚木糖 Alkali-extracted crystalline xylan | 草酸高温水解High-temperature water hydrolysis using oxalic acid | 100 ℃,9 h | 40~45 | 40~80 nm | 球形 Spheric | 180~210 | |
| 碱提取的聚木糖 Alkali-extracted crystalline xylan | 在二甲基亚砜中分散并热诱导结晶Dispersed in dimethyl sulfoxide and thermally induced crystallization | 60 ℃,2~20 d | 20~30 | 200~850 nm | 棒状 Rod-like | 18~120 | |
| 碱提取的聚木糖 Alkali-extracted crystalline xylan | 自组装和从过饱和溶液中再结晶Self-assembly followed by recrystallization from supersaturated solutions | 121 ℃,3 h | 20~30 | 400 nm~ 2.5 μm | 六边形凸板片Hexagonal sheets | 60~70 | |
| 碱提取的苜蓿草聚木糖 Alkali-extracted crystalline xylan from Medicago sativa | 自组装和从过饱和溶液中再结晶Self-assembly followed by recrystallization from supersaturated solutions | 121 ℃,4 h | 20~30 | ~40 nm | 纳米簇胶体和晶体Nano-cluster colloids and crystals | 60~80 | |
| 水溶性支链聚木糖 Water-soluble branched xylan | 一锅法去支链和去乙酰化, 随后自组装One-pot de-branching and de-acetylation, followed by self-assembly | 50 ℃,6~8 h | 20~30 | 50~60 nm | 纳米簇球体Nano-cluster colloids | 60~70 |
| 金旭宸, 项舟洋. 羧甲基化对木聚糖结晶能力及水铸膜成膜性能的影响. 林业工程学报, 2021, 6 (6): 94- 100. | |
| Jin X C, Xiang Z Y. Crystallization ability and water cast film formability of carboxymethylated xylan. Journal of Forestry Engineering, 2021, 6 (6): 94- 100. | |
| 金旭宸, 项舟洋. 相对分子质量对木聚糖结晶能力的影响. 林产化学与工业, 2022, 42 (4): 40- 46. | |
| Jin X C, Xiang Z Y. The effects of molecule weight on the crystallization ability of xylan. Chemistry and Industry of Forest Products, 2022, 42 (4): 40- 46. | |
|
Bosmans T J, Stépán A M, Toriz G, et al. Assembly of debranched xylan from solution and on nanocellulosic surfaces. Biomacromolecules, 2014, 15 (3): 924- 930.
doi: 10.1021/bm4017868 |
|
|
Campelo P H, Sant’Ana A S, Pedrosa Silva Clerici M T. Starch nanoparticles: production methods, structure, and properties for food applications. Current Opinion in Food Science, 2020, 33, 136- 140.
doi: 10.1016/j.cofs.2020.04.007 |
|
| Chanzy H, Comtat J, Dube M, et al. Enzymatic degradation of β (1→4) xylan single crystals. Biopolymers: Original Research on Biomolecules, 1979, 18 (10): 2459- 2464. | |
| Chanzy H, Vuong R. 1985. Ultrastructure and morphology of crystalline polysaccharides. Polysaccharides, London: Palgrave Macmillan UK, 41−71. | |
|
Chavan P, Sinhmar A, Nehra M, et al. Impact on various properties of native starch after synthesis of starch nanoparticles: a review. Food Chemistry, 2021, 364, 130416.
doi: 10.1016/j.foodchem.2021.130416 |
|
|
Fan Y M, Saito T, Isogai A. Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin. Biomacromolecules, 2008, 9 (1): 192- 198.
doi: 10.1021/bm700966g |
|
|
Gabbay S M, Sundararajan P R, Marchessault R H. X-ray and stereochemical studies on xylan diacetate. Biopolymers, 1972, 11 (1): 79- 94.
doi: 10.1002/bip.1972.360110106 |
|
|
Gomri C, Cretin M, Semsarilar M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-a comprehensive review. Carbohydrate Polymers, 2022, 294, 119790.
doi: 10.1016/j.carbpol.2022.119790 |
|
|
Hao X, Li N, Wang H R, et al. Dialdehyde xylan-based sustainable, stable, and catalytic liquid metal nano-inks. Green Chemistry, 2021, 23 (19): 7796- 7804.
doi: 10.1039/D1GC02696H |
|
|
Hao X, Lü Z W, Wang H R, et al. Top-down production of sustainable and scalable hemicellulose nanocrystals. Biomacromolecules, 2022, 23 (11): 4607- 4616.
doi: 10.1021/acs.biomac.2c00841 |
|
|
Horio M, Imamura R. Crystallographic study of xylan from wood. Journal of Polymer Science Part A: General Papers, 1964, 2 (2): 627- 644.
doi: 10.1002/pol.1964.100020206 |
|
|
Johnson A M, Karaaslan M A, Cho M, et al. Exploring the impact of water on the morphology and crystallinity of xylan hydrate nanotiles. Carbohydrate Polymers, 2023a, 319, 121165.
doi: 10.1016/j.carbpol.2023.121165 |
|
|
Johnson A M, Mottiar Y, Ogawa Y, et al. The formation of xylan hydrate crystals is affected by sidechain uronic acids but not by lignin. Cellulose, 2023b, 30 (13): 8475- 8494.
doi: 10.1007/s10570-023-05422-2 |
|
|
Leung A C W, Hrapovic S, Lam E, et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 2011, 7 (3): 302- 305.
doi: 10.1002/smll.201001715 |
|
|
Li L, Xiang Z Y. Crystallization properties of acetylated β-(1–4)-d-xylan. Cellulose, 2022, 29 (1): 107- 115.
doi: 10.1007/s10570-021-04277-9 |
|
|
Liao G F, Sun E H, Gueguim Kana E B, et al. Renewable hemicellulose-based materials for value-added applications. Carbohydrate Polymers, 2024, 341, 122351.
doi: 10.1016/j.carbpol.2024.122351 |
|
|
Liu P W, Pang B, Dechert S, et al. Structure selectivity of alkaline periodate oxidation on lignocellulose for facile isolation of cellulose nanocrystals. Angewandte Chemie (International Ed), 2020, 59 (8): 3218- 3225.
doi: 10.1002/anie.201912053 |
|
|
Liu Q L, Tian R, Lv Z W, et al. Rapid, selective, and room temperature dissolution of crystalline xylan by a hydrotrope. Carbohydrate Polymers, 2023, 300, 120245.
doi: 10.1016/j.carbpol.2022.120245 |
|
|
Lizundia E, Puglia D, Nguyen T D, et al. Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.
doi: 10.1016/j.pmatsci.2020.100668 |
|
|
Lü B Z, Gao Q, Li P Y, et al. Natural ultralong hemicelluloses phosphorescence. Cell Reports Physical Science, 2022, 3 (9): 101015.
doi: 10.1016/j.xcrp.2022.101015 |
|
|
Lü Z W, Rao J, Lü B Z, et al. Microencapsulated phase change material via Pickering emulsion based on xylan nanocrystal for thermoregulating application. Carbohydrate Polymers, 2023, 302, 120407.
doi: 10.1016/j.carbpol.2022.120407 |
|
|
Luo X F, Tian B, Zhai Y X, et al. Room-temperature phosphorescent materials derived from natural resources. Nature Reviews Chemistry, 2023, 7 (11): 800- 812.
doi: 10.1038/s41570-023-00536-4 |
|
|
Marchessault R H, Timell T E. The X-ray pattern of crystalline xylans. The Journal of Physical Chemistry, 1960, 64 (5): 704.
doi: 10.1021/j100834a522 |
|
|
Meng Z J, Sawada D, Laine C, et al. Bottom-up construction of xylan nanocrystals in dimethyl sulfoxide. Biomacromolecules, 2021, 22 (2): 898- 906.
doi: 10.1021/acs.biomac.0c01600 |
|
|
Nieduszynski I, Marchessault R H. Structure of β-D-(1→4′)xylan hydrate. Nature, 1971, 232 (5305): 46- 47.
doi: 10.1038/232046a0 |
|
|
Nieduszynski I, Marchessault R H. Structure of β, D(1→4′)-xylan hydrate. Biopolymers, 1972, 11 (7): 1335- 1344.
doi: 10.1002/bip.1972.360110703 |
|
|
Rao J, Lü Z W, Chen G G, et al. Hemicellulose: structure, chemical modification, and application. Progress in Polymer Science, 2023, 140, 101675.
doi: 10.1016/j.progpolymsci.2023.101675 |
|
|
Seidi F, Yazdi M K, Jouyandeh M, et al. Crystalline polysaccharides: a review. Carbohydrate Polymers, 2022, 275, 118624.
doi: 10.1016/j.carbpol.2021.118624 |
|
|
Senf D, Ruprecht C, Kishani S, et al. Tailormade polysaccharides with defined branching patterns: enzymatic polymerization of arabinoxylan oligosaccharides. Angewandte Chemie (International Ed), 2018, 57 (37): 11987- 11992.
doi: 10.1002/anie.201806871 |
|
|
Smith P J, Curry T M, Yang J Y, et al. Enzymatic synthesis of xylan microparticles with tunable morphologies. ACS Materials Au, 2022, 2 (4): 440- 452.
doi: 10.1021/acsmaterialsau.2c00006 |
|
| Vanderfleet O M, Cranston E D. Production routes to tailor the performance of cellulose nanocrystals. Nature Reviews Materials, 2021, 6 (2): 124- 144. | |
| Wang H R, Li X P, Zhao S W, et al. Repurposing xylan biowastes for sustainable household detergents. ACS Sustainable Chemistry & Engineering, 2023, 11 (7): 2949- 2958. | |
|
Wang S Y, Song T, Qi H S, et al. Exceeding high concentration limits of aqueous dispersion of carbon nanotubes assisted by nanoscale xylan hydrate crystals. Chemical Engineering Journal, 2021a, 419, 129602.
doi: 10.1016/j.cej.2021.129602 |
|
|
Wang S Y, Xiang Z Y. Highly stable pickering emulsions with xylan hydrate nanocrystals. Nanomaterials, 2021b, 11 (10): 2558.
doi: 10.3390/nano11102558 |
|
|
Xiang Z Y, Jin X C, Huang C X, et al. Water cast film formability of sugarcane bagasse xylans favored by side groups. Cellulose, 2020, 27 (13): 7307- 7320.
doi: 10.1007/s10570-020-03291-7 |
|
|
Yu S M, Peng G N, Wu D F. Rod-like xylan nanocrystals as stabilizer towards fabricating oil-in-water pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675, 132129.
doi: 10.1016/j.colsurfa.2023.132129 |
|
| Zhang H, Liu P W, Musa S M, et al. Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustainable Chemistry & Engineering, 2019, 7 (12): 10452- 10459. | |
|
Zhang H Y, Johnson A M, Hua Q, et al. Size-controlled synthesis of xylan micro/nanoparticles by self-assembly of alkali-extracted xylan. Carbohydrate Polymers, 2023, 315, 120944.
doi: 10.1016/j.carbpol.2023.120944 |
|
|
Zhang Y D, Wang L Y, Zhang H, et al. Crystalline nanoxylan from hot water extracted wood xylan at multi-length scale: Molecular assembly from nanocluster hydrocolloids to submicron spheroids. Carbohydrate Polymers, 2024, 335, 122089.
doi: 10.1016/j.carbpol.2024.122089 |
| [1] | Fanbin Kong,Ludan Cao,Caiyao Xu. Compensation Mechanism for Forest Carbon Sink in the Qiantang River Basin Based on Carbon Revenue and Expenditure Accounting [J]. Scientia Silvae Sinicae, 2022, 58(9): 1-15. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||