Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (7): 54-64.doi: 10.11707/j.1001-7488.LYKX20210943
• Research papers • Previous Articles Next Articles
Yi Wang1,2(),Junwei Luan1,Chen Chen3,Shirong Liu4,*
Received:
2021-12-26
Online:
2023-07-25
Published:
2023-09-08
Contact:
Shirong Liu
E-mail:wangyi@icbr.ac.cn
CLC Number:
Yi Wang,Junwei Luan,Chen Chen,Shirong Liu. Asymmetric Response of Soil Respiration and Its Components to Nitrogen and Phosphorus Addition in Phyllostachys edulis Forest[J]. Scientia Silvae Sinicae, 2023, 59(7): 54-64.
Table 1
Stand charicteristics of Ph. edulis plots of different treatments"
处理 Treatment | 密度 Stand density/ (culm?hm?2) | 平均胸径 Mean DBH/cm | 坡度 Slope/(°) | 海拔 Altitude/m |
CK | 4725±350a | 9.61±0.10a | <5 | 896.5 |
N | 4650±325a | 9.76±0.30a | <5 | 900.8 |
P | 4875±520a | 9.65±0.15a | <5 | 902.5 |
N+P | 4975±148a | 9.36±0.29a | <5 | 899.1 |
Table 2
Difference of soil and fine root properties under different treatments"
指标 Index | 处理 Treatment | 处理效应(F) Effect of treatment(F ) | ||||||
CK | N | P | N+P | N | P | N × P | ||
土壤温度 Soil temperature/℃ | 19.42±0.97a | 19.21±0.98a | 18.97±0.96a | 19.30±0.97a | 0.75 | 0.40 | 0.22 | |
土壤湿度 Soil moisture(%) | 45.01±1.02a | 47.27±1.25a | 47.37±1.02a | 48.42±1.56a | 0.29 | 0.43 | 0.79 | |
土壤有机碳含量 Soil organic carbon/(g·kg?1) | 63.15±2.65a | 71.85±4.15a | 62.63±2.24a | 67.00±3.49a | 4.13* | 0.70 | 0.45 | |
土壤全氮含量 Soil total nitrogen/(g·kg?1) | 10.88±0.58b | 12.78±0.50a | 10.80±0.51b | 11.85±0.23ab | 9.77*** | 1.12 | 0.81 | |
土壤全磷含量 Soil total phosphorus/(g·kg?1) | 0.07±0.02a | 0.08±0.01a | 0.06±0.01a | 0.17±0.07a | 2.67 | 1.41 | 2.23 | |
土壤可利用氮含量 Soil availability nitrogen/(mg·kg?1) | 0.09±0.01ab | 0.11±0.01a | 0.09±0.01b | 0.10±0.01ab | 4.59* | 0.91 | 0.36 | |
土壤pH Soil pH | 4.55±0.07a | 4.46±0.06a | 4.54±0.10a | 4.45±0.04a | 1.81 | 0.05 | 0.00 | |
细根生物量 Fine root biomass/(t·hm?2) | 2.44±0.74a | 1.88±0.18a | 2.42±1.02a | 2.13±0.90a | 0.30 | 0.02 | 0.03 | |
细根有机碳含量 Fine root organic carbon/(g·kg?1) | 346.38±12.95b | 384.93±7.43a | 383.93±8.32a | 351.88±11.99ab | 0.10 | 0.05 | 11.44*** | |
细根全氮含量 Fine root total nitrogen/(g·kg?1) | 14.18±1.22b | 15.90±1.29ab | 14.63±0.38ab | 17.30±0.52a | 5.46** | 0.97 | 0.25 | |
细根全磷含量 Fine root total phosphorus/(g·kg?1) | 0.08±0.03ab | 0.07±0.02b | 0.15±0.04a | 0.12±0.02ab | 0.77 | 5.37** | 0.23 |
Table 3
Difference of fine root biomass and soil microbial biomass and community structure under different treatments"
指标Index | 处理 Treatment | 处理效应(F) Effect of treatment(F ) | ||||||
CK | N | P | N + P | N | P | N × P | ||
土壤微生物量 Soil microbial biomass/(nmol·g?1) | 25.42±1.29a | 25.14±1.61a | 25.47±0.70a | 25.43±1.64a | 0.01 | 0.02 | 0.01 | |
细菌生物量 Bacterial biomass/(nmol·g?1) | 8.84±0.77a | 8.34±0.76a | 9.13±0.32a | 9.03±0.88a | 0.18 | 0.46 | 0.08 | |
真菌生物量 Fungal biomass/(nmol·g?1) | 0.70±0.09a | 0.65±0.11a | 0.63±0.05a | 0.64±0.09a | 0.05 | 0.20 | 0.14 | |
丛枝菌根真菌生物量 Arbuscular mycorrhizal fungi biomass/(nmol·g?1) | 0.22±0.03a | 0.21±0.03a | 0.23±0.02a | 0.22±0.03a | 0.19 | 0.13 | 0.00 | |
放线菌生物量 Actinomycetes biomass/(nmol·g?1) | 1.45±0.13a | 1.37±0.14a | 1.49±0.06a | 1.47±0.14a | 0.18 | 0.31 | 0.07 | |
革兰氏阳性菌生物量 Gram positive bacteria biomass/(nmol·g?1) | 3.88±0.28a | 3.59±0.21a | 4.10±0.09a | 4.01±0.31a | 0.66 | 1.83 | 0.20 | |
革兰氏阴性菌生物量 Gram negative bacteria biomass/(nmol·g?1) | 1.51±0.18a | 1.41±0.15a | 1.51±0.09a | 1.52±0.16a | 0.08 | 0.13 | 0.13 | |
真菌:细菌 Ratio of F to B | 0.35±0.01a | 0.32±0.01ab | 0.31±0.01b | 0.31±0.01ab | 0.52 | 4.11* | 1.62 | |
丛枝真菌:真菌 Ratio of AMF to F | 0.31±0.01b | 0.33±0.02ab | 0.37±0.02a | 0.34±0.01ab | 0.03 | 3.86* | 1.46 | |
革兰氏阳性细菌:革兰氏阴性细菌 Ratio of GP to GN | 2.62±0.16a | 2.57±0.12a | 2.74±0.10a | 2.67±0.09a | 0.21 | 0.73 | 0.01 |
Table 4
P-values of three-way ANOVA on the effects of N addition, P addition, time and their interaction on soil temperature, soil moisture, soil respiration and its components"
处理效应 Effect of treatment | Rs | Ra | Rh |
氮添加主效应 N effect | 0.122 | 0.983 | 0.027 |
磷添加主效应 P effect | 0.015 | 0.108 | 0.008 |
时间主效应 Time | <0.001 | <0.001 | <0.001 |
氮添加×磷添加 Interaction of N × P | 0.171 | 0.002 | <0.001 |
氮添加×时间 Interaction of N × time | 0.986 | 0.896 | 0.534 |
磷添加×时间 Interaction of P × time | 0.560 | 0.801 | 0.688 |
氮添加×磷添加×时间 Interaction of N × P × time | 1.000 | 0.716 | 0.558 |
Table 5
Results of model goodness of the relationship between soil temperature and moisture and soil respiration rate and its components"
土壤呼吸组分 Soil respiration components | 模型 Model | 处理 | |||
CK | N | P | N+P | ||
Rs | 1 | ?44.2 | ?40.5 | ?22.3 | ?44.8 |
2 | ?11.4 | ?9.6 | 9.6 | ?9.6 | |
3 | ?10.2 | ?8.6 | 10.5 | ?9.7 | |
4 | ?8.4 | ?6.4 | 12.3 | ?6.6 | |
5 | ?43.8 | ?40.4 | ?24.1 | ?39.8 | |
6 | 11.2 | 12.1 | 14.5 | 10.6 | |
7 | 12.7 | 13.4 | 14.6 | 11.5 | |
Ra | 1 | ?33.8 | ?33.3 | ?14.7 | ?19.1 |
2 | ?21.4 | ?13.6 | 3.1 | ?16.6 | |
3 | ?20.1 | ?11.9 | 3.7 | ?20.6 | |
4 | ?18.4 | ?10.6 | 5.8 | ?13.4 | |
5 | ?35.8 | ?35.0 | ?16.2 | ?15.1 | |
6 | ?4.4 | 2.5 | 4.3 | ?1.9 | |
7 | ?3.2 | 3.8 | 3.6 | ?2.7 | |
Rh | 1 | ?49.5 | ?52.1 | ?46.8 | ?43.2 |
2 | ?39.1 | ?51.0 | ?39.3 | ?31.6 | |
3 | ?37.1 | ?49.3 | ?37.5 | ?30.5 | |
4 | ?37.1 | ?49.1 | ?37.4 | ?29.3 | |
5 | ?40.7 | ?40.5 | ?39.3 | ?43.7 | |
6 | ?9.8 | ?20.7 | ?15.3 | ?14.9 | |
7 | ?10.7 | ?18.8 | ?17.3 | ?16.8 |
Table 6
Relationships (Model 1) between soil respiration and its components rates and soil temperature and soil moisture under different treatments"
土壤呼吸组分 Soil respiration components | 处理 Treatment | a | b | c | R2 | Q10 |
Rs | CK | 0.529 | 0.097 | 0.526 | 0.938*** | 2.638 |
N | 0.559 | 0.093 | 0.511 | 0.918*** | 2.535 | |
P | 0.538 | 0.074 | ?0.313 | 0.668*** | 2.096 | |
N + P | 0.836 | 0.087 | 0.826 | 0.924*** | 2.387 | |
Ra | CK | 0.143 | 0.103 | ?0.045 | 0.903*** | 2.801 |
N | 0.201 | 0.108 | 0.257 | 0.906*** | 2.945 | |
P | 0.181 | 0.089 | ?0.633 | 0.634*** | 2.435 | |
N + P | 0.253 | 0.147 | 1.876 | 0.842*** | 4.349 | |
Rh | CK | 0.467 | 0.084 | 1.158 | 0.948*** | 2.316 |
N | 0.480 | 0.071 | 1.291 | 0.935*** | 2.034 | |
P | 0.589 | 0.066 | 1.107 | 0.899*** | 1.935 | |
N + P | 0.552 | 0.056 | 0.465 | 0.842*** | 1.751 |
Table 7
Pearson correlations between soil respiration and its components rates and relevant factors"
指标 Index | Rs | Ra | Rh |
土壤有机碳Soil organic carbon/(g·kg?1) | 0.037 | 0.019 | 0.033 |
土壤全氮Soil total nitrogen/(g·kg?1) | 0.195 | 0.233 | ?0.109 |
土壤全磷Soil total phosphorus/(g·kg?1) | ?0.296 | ?0.143 | ?0.271* |
土壤可利用氮Soil availability nitrogen/(mg·kg?1) | ?0.313 | ?0.073 | ?0.447** |
土壤pH Soil pH | ?0.067 | 0.046 | ?0.223 |
细根有机碳Fine root organic carbon/(g·kg?1) | 0.066 | 0.099 | ?0.079 |
细根全氮Fine root total nitrogen/(g·kg?1) | 0.192 | 0.116 | 0.129 |
细根全磷Fine root total phosphorus/(g·kg?1) | ?0.316 | ?0.105 | ?0.388 |
细根生物量Fine root biomass/(t·hm?2) | 0.692*** | 0.597*** | 0.091 |
土壤微生物量Soil microbial biomass/(nmol·g?1) | 0.686*** | 0.467** | 0.348* |
细菌生物量Bacterial biomass/(nmol·g?1) | 0.620*** | 0.386* | 0.388* |
真菌生物量Fungal biomass/(nmol·g?1) | 0.692*** | 0.414* | 0.469** |
丛枝菌根真菌生物量Arbuscular mycorrhizal fungi biomass/(nmol·g?1soil) | 0.667*** | 0.394* | 0.462** |
放线菌生物量Actinomycetes biomass/(nmol·g?1soil) | 0.632*** | 0.370* | 0.444** |
革兰氏阳性菌生物量Gram positive bacteria biomass/(nmol·g?1) | 0.467** | 0.257 | 0.363* |
革兰氏阴性菌生物量Gram negative bacteria biomass/(nmol·g?1) | 0.666*** | 0.413* | 0.423* |
真菌:细菌Ratio of fungi to bacteria | 0.413* | 0.081 | 0.623*** |
丛枝真菌:真菌Ratio of arbuscular mycorrhizal fungi to fungi | ?0.317* | ?0.171 | ?0.253 |
革兰氏阳性细菌:革兰氏阴性细菌Ratio of gram positive bacteria to gram negative bacteria | ?0.702*** | ?0.475** | ?0.362* |
房焕英, 肖胜生, 余小芳, 等. 湿地松人工林土壤呼吸及其组分对模拟酸雨的响应. 林业科学, 2021, 57 (7): 20- 31. | |
Fang H Y, Xiao S S, Yu X F, et al. Responses of soil respiration and its components to simulated acid rain in Pinus elliottii plantation . Scientia Silvae Sinicae, 2021, 57 (7): 20- 31. | |
高强伟, 代 斌, 罗承德, 等. 蜀南竹海毛竹林土壤物理性质空间异质性. 生态学报, 2016, 36 (8): 2255- 2263. | |
Gao Q W, Dai B, Luo C D, et al. Spatial heterogeneity of soil physical properties in Phyllostachysheterocycla cv. pubescens forest, South Sichuan Bamboo Sea . Acta Ecologica Sinica, 2016, 36 (8): 2255- 2263. | |
高小敏, 刘世荣, 王 一, 等. 穿透雨减少和氮添加对毛竹叶片和细根化学计量学的影响. 生态学报, 2021, 41 (4): 1440- 1450. | |
Gao X M, Liu S R, Wang Y, et al. Effects of throughfall reduction and nitrogen addition on stoichiometry of leaf and fine root in Phyllostachys edulis forests . Acta Ecologica Sinica, 2021, 41 (4): 1440- 1450. | |
刘广路, 范少辉, 苏文会, 等. 施肥时间对毛竹林生产力分配格局及土壤性质的影响. 东北林业大学学报, 2011, 39 (4): 62- 66. | |
Liu G L, Fan S H, Su W H, et al. Effects of fertilizer application time on distribution pattern of productivities and soil properties of Phyllostachys edulis forests . Journal of Northeast Forestry University, 2011, 39 (4): 62- 66. | |
刘 骏, 杨清培, 余定坤, 等. 细根对竹林-阔叶林界面两侧土壤养分异质性形成的贡献. 植物生态学报, 2013, 37 (8): 739- 749. | |
Liu J, Yang Q P, Yu D K, et al. Contribution of fine root to soil nutrient heterogeneity at two sides of the bamboo and broad-leaved forest interface. Chinese Journal of Plant Ecology, 2013, 37 (8): 739- 749. | |
刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 1997, 17 (5): 469- 476. | |
Liu S H, Fang J Y. Effect factors of soil respiration and the temperature's effects on soil respiration in the global scale. Acta Ecologica Sinica, 1997, 17 (5): 469- 476. | |
王 一, 刘彦春, 刘世荣, 等. 模拟气候变暖和林内穿透雨减少对干旱年暖温带锐齿栎林土壤呼吸的影响. 林业科学研究, 2016, 29 (5): 698- 704. | |
Wang Y, Liu Y C, Liu S R, et al. Response of soil respiration to soil warming and throughfall exclusion in warm-temperate oak forest in drought year. Forest Research, 2016, 29 (5): 698- 704. | |
杨庆鹏, 徐 明, 刘洪升, 等. 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 2011, 31 (8): 2301- 2311. | |
Yang Q P, Xu M, Liu H S, et al. Impact factors and uncertainties of the temperature sensitivity of soil respiration. Acta Ecologica Sinica, 2011, 31 (8): 2301- 2311. | |
张 蕊, 申贵仓, 张旭东, 等. 四川长宁毛竹林碳储量与碳汇能力估测. 生态学报, 2014, 34 (13): 3592- 3601. | |
Zhang R, Shen G C, Zhang X D, et al. Carbon stock and sequestration of a Phyllostachys edulis forest in Changning, Sichuan Province . Acta Ecologica Sinica, 2014, 34 (13): 3592- 3601. | |
Biasi C, Rusalimova O, Meyer H, et al. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry, 2005, 19 (11): 1401- 1408.
doi: 10.1002/rcm.1911 |
|
Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464 (7288): 579- 582.
doi: 10.1038/nature08930 |
|
Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 1998, 396 (6711): 570- 572.
doi: 10.1038/25119 |
|
Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004, 196 (1): 43- 56.
doi: 10.1016/j.foreco.2004.03.011 |
|
Camiré C, Côté B, Brulotte S. Decomposition of roots of black alder and hybrid poplar in short-rotation plantings: nitrogen and lignin control. Plant and Soil, 1991, 138 (1): 123- 132.
doi: 10.1007/BF00011814 |
|
Chen F, Yan G Y, Xing Y J, et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agricultural and Forest Meteorology, 2019, 271, 336- 345.
doi: 10.1016/j.agrformet.2019.03.021 |
|
Feng J G, Zhu B. A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biology and Biochemistry, 2019, 135, 38- 47.
doi: 10.1016/j.soilbio.2019.04.008 |
|
Frostegård Å, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 1993, 59 (11): 3605- 3617.
doi: 10.1128/aem.59.11.3605-3617.1993 |
|
Gao Q, Hasselquist N J, Palmroth S, et al. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest. Soil Biology and Biochemistry, 2014, 76, 297- 300.
doi: 10.1016/j.soilbio.2014.04.020 |
|
Gaumont-Guay D, Black T A, Barr A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand. Tree Physiology, 2008, 28 (2): 161- 171.
doi: 10.1093/treephys/28.2.161 |
|
Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 2000, 48 (1): 115- 146.
doi: 10.1023/A:1006244819642 |
|
Harpole W S, Ngai J T, Cleland E E, et al. Nutrient co-limitation of primary producer communities. Ecology Letters, 2011, 14 (9): 852- 862.
doi: 10.1111/j.1461-0248.2011.01651.x |
|
Huang S D, Ye G F, lin J, et al. Autotrophic and heterotrophic soil respiration responds asymmetrically to drought in a subtropical forest in the Southeast China. Soil Biology and Biochemistry, 2018, 123, 242- 249.
doi: 10.1016/j.soilbio.2018.04.029 |
|
Hu S D, Li Y F, Chang S X, et al. Soil autotrophic and heterotrophic respiration respond differently to land-use change and variations in environmental factors. Agricultural and Forest Meteorology, 2018, 250/251, 290- 298.
doi: 10.1016/j.agrformet.2018.01.003 |
|
Jiang H, Deng Q, Zhou G, et al. 2013. Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China. Biogeosciences 10(6): 3963−3982. | |
Li H J, Yan J X, Yue X F, et al. Significance of soil temperature and moisture for soil respiration in a Chinese Mountain area. Agricultural and Forest Meteorology, 2008, 148 (3): 490- 503.
doi: 10.1016/j.agrformet.2007.10.009 |
|
Li Q, Song X Z, Chang S X, et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agricultural and Forest Meteorology, 2019, 268, 48- 54.
doi: 10.1016/j.agrformet.2019.01.012 |
|
Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Functional Ecology, 1994, 8 (3): 315.
doi: 10.2307/2389824 |
|
Mouginot C, Kawamura R, Matulich K L, et al. Elemental stoichiometry of fungi and bacteria strains from grassland leaf litter. Soil Biology and Biochemistry, 2014, 76, 278- 285.
doi: 10.1016/j.soilbio.2014.05.011 |
|
Ren F, Yang X X, Zhou H K, et al. Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan Plateau. Scientific Reports, 2016, 6, 34786.
doi: 10.1038/srep34786 |
|
Saiz G, Black K, Reidy B, et al. Assessment of soil CO2 efflux and its components using a process-based model in a young temperate forest site . Geoderma, 2007, 139 (1/2): 79- 89. | |
Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48 (1): 7- 20.
doi: 10.1023/A:1006247623877 |
|
Song X Z, Chen X F, Zhou G M, et al. Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agricultural and Forest Meteorology, 2017, 247, 467- 475.
doi: 10.1016/j.agrformet.2017.09.001 |
|
Song X Z, Peng C H, Ciais P, et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest . Science Advances, 2020, 6 (12): eaaw5790.
doi: 10.1126/sciadv.aaw5790 |
|
Suseela V, Conant R, Wallenstein M, et al. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 2012, 18 (1): 336- 348.
doi: 10.1111/j.1365-2486.2011.02516.x |
|
Tang X L, Liu S G, Zhou G Y, et al. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in Southern China . Global Change Biology, 2006, 12 (3): 546- 560.
doi: 10.1111/j.1365-2486.2006.01109.x |
|
Van’t Hoff J H. 1898. Lectures on theoretical and physical chemistry. Part 1. Chemical Dynamics. London: Edward Arnold. | |
Wang B, Zha T S, Jia X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences, 2014, 11 (2): 259- 268.
doi: 10.5194/bg-11-259-2014 |
|
Wang Q K, Zhang W D, Sun T, et al. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest . Agricultural and Forest Meteorology, 2017, 232, 66- 73.
doi: 10.1016/j.agrformet.2016.08.007 |
|
Wang Y, Liu S R, Luan J W, et al. Nitrogen addition exacerbates the negative effect of throughfall reduction on soil respiration in a bamboo forest. Forests, 2021, 12 (6): 724.
doi: 10.3390/f12060724 |
|
Wei S Z, Tie L H, Liao J, et al. Nitrogen and phosphorus co-addition stimulates soil respiration in a subtropical evergreen broad-leaved forest. Plant and Soil, 2020, 45 (1/2): 171- 182. | |
Wu Z T, Dijkstra P, Koch G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 2011, 17 (2): 927- 942.
doi: 10.1111/j.1365-2486.2010.02302.x |
|
Yan W M, Zhong Y Q W, Liu W Z, et al. 2021. Asymmetric response of ecosystem carbon components and soil water consumption to nitrogen fertilization in farmland. Agriculture, Ecosystems and Environment, 305: 107166. | |
Zheng M H, Zhang T, Liu L, et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences, 2016, 13 (11): 3503- 3517.
doi: 10.5194/bg-13-3503-2016 |
|
Zhong Y Q W, Yan W M, Shangguan Z P. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties . Global Ecology and Biogeography, 2016, 25 (4): 475- 488.
doi: 10.1111/geb.12430 |
|
Zhou L Y, Zhou X H, Shao J J, et al. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Global Change Biology, 2016, 22 (9): 3157- 3169.
doi: 10.1111/gcb.13253 |
|
Zhou L Y, Zhou X H, Zhang B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Global Change Biology, 2014, 20 (7): 2332- 2343.
doi: 10.1111/gcb.12490 |
[1] | Jinling Yuan,Jinjun Yue,Jingxia Ma,Lei Yu,Lei Liu. Culm Form Characteristics of Phyllostachys edulis ‘Yuanbao’ [J]. Scientia Silvae Sinicae, 2023, 59(5): 71-80. |
[2] | Wei Zhang,Yuyou He,Ziwu Guo,Sheping Wang,Shuanglin Chen. Characteristics of Arbor Species Community Structure and Diversity in the Succession of Out-of-Management Phyllostachys edulis Forest [J]. Scientia Silvae Sinicae, 2022, 58(12): 12-20. |
[3] | Jiamin Xie,Mingbing Zhou. Identification and Bioinformatics Analysis of Mariner-Like Element Autonomous Transposons in Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2022, 58(1): 175-184. |
[4] | Wenjie Hu,Hongdong Pang,Xingyi Hu,Faxin Huang,Jiawei Yang,Lijun Xu,Miao Gong. Effects of Bamboo Forest Density and Fertilizer Types on the Yield and Quality of Phyllostachys edulis Bamboo Shoots and Soil Physicochemical Properties in Mufu Mountain Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 32-42. |
[5] | Chenglei Zhu,Kebin Yang,Xiurong Xu,Shuang Ma,Xiaopei Li,Zhimin Gao. Molecular Characteristics of NIP Genes in Phyllostachys edulis and Their Expression Patterns in Response to Stresses [J]. Scientia Silvae Sinicae, 2021, 57(1): 64-76. |
[6] | Linxin Fang,Shouke Zhang,Kefeng Jia,Bihuan Ye,Wei Zhang,Jinping Shu,Haojie Wang,Tiansen Xu. Oviposition Preference of Eutomostethus deqingensis (Hymenoptera: Tenthredinidae) on Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2021, 57(1): 131-139. |
[7] | Chenglei Zhu,Caili Li,Xiaopei Li,Jingjing Shi,Zhimin Gao. Molecular Characteristics of Tubulins and Preliminary Function Analysis of PeTUA3 in Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2020, 56(7): 44-54. |
[8] | Qianyong Shen,Mengping Tang. Stem Volume Models of Phyllostachys edulis in Zhejiang Province [J]. Scientia Silvae Sinicae, 2020, 56(5): 89-96. |
[9] | Tao Chenyue, Shao Shanlu, Shi Wenhui, Lin Lin, Tang Yilei, Ying Yeqing. Effects of Nitrogen Deposition on Biomass and Protective Enzyme Activities of Phyllostachys edulis Seedlings under Drought Stress [J]. Scientia Silvae Sinicae, 2019, 55(9): 31-40. |
[10] | Ali Chen,Wanqi Zhao,Yuqing Ruan,Chunce Guo,Wengen Zhang,Jianmin Shi,Guangyao Yang,Fen Yu. Pattern of Emergence and Degradation of Phyllostachys edulis' Pachyloen' Shoot and the Changes of Nutrient Composition during Degradation [J]. Scientia Silvae Sinicae, 2019, 55(12): 32-40. |
[11] | Yaqian Yang,Ying Fu,Mingbing Zhou. Identification of Cytokinin Related Genes and Characterization of Their Expression in Phyllostachys edulis Shoots [J]. Scientia Silvae Sinicae, 2019, 55(12): 61-73. |
[12] | Qianyong Shen,Mengping Tang. Stem Biomass Models of Phyllostachys edulis in Zhejiang Province [J]. Scientia Silvae Sinicae, 2019, 55(11): 181-188. |
[13] | Li Weicheng, Sheng Haiyan, Jiang Yueping, Wen Xing. Soil CO2 Flux and Its Influence Factors of Different Bamboo Plantations in the Dike-Pond Ecosystem [J]. Scientia Silvae Sinicae, 2018, 54(8): 13-22. |
[14] | Liu Peng, Jia Xin, Yang Qiang, Zha Tianshan, Wang Ben, Ma Jingyong. Characterization of Soil Respiration in a Shrubland Ecosystem of Artemisia ordosica in Mu Us Desert [J]. Scientia Silvae Sinicae, 2018, 54(5): 10-17. |
[15] | Wang Yuanjie, Guo Xuefeng, Zhao Lei, Guo Cheng, Wang Yuwei. Characterization of the C-glycosylation Pathway and C-glucosyltransferase of C-glycosyl Flavonoids from Phyllostachys edulis Leaves [J]. Scientia Silvae Sinicae, 2018, 54(12): 60-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||