Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (4): 127-135.doi: 10.11707/j.1001-7488.LYKX20230158
Previous Articles Next Articles
Xia Wang,Yinzhu Cao,Huafeng Wu,Daofeng Liu,Shunzhao Sui*()
Received:
2023-04-17
Online:
2024-04-25
Published:
2024-05-23
Contact:
Shunzhao Sui
E-mail:.sszcq@126.com
CLC Number:
Xia Wang,Yinzhu Cao,Huafeng Wu,Daofeng Liu,Shunzhao Sui. Cloning and Functional Analysis of the Transcription Factor CpBBX24 Gene of Chimonanthus praecox[J]. Scientia Silvae Sinicae, 2024, 60(4): 127-135.
Fig.6
Phenotype observation of Arabidopsis under PEG stress A: Performance of Arabidopsis overexpressing CpBBX24 under PEG treatment; B: Measurement of relative conductivity; C: Measurement of the molar concentration of malondialdehyde. OE-2, OE-5 and OE-8 indicate low, medium and high expression levels of transgenic lines, respectively, and WT is wild type. Different lowercase letters indicate significant differences among different materials with the same treatment (P<0.05)."
Fig.7
Phenotype observation of Arabidopsis under NaCl stress A: Performance of Arabidopsis overexpressing CpBBX24 under NaCl treatment; B: Measurement of relative conductivity; C: Measurement of the molar concentration of malondialdehyde. OE-2, OE-5 and OE-8 indicate low, medium and high expression levels of transgenic lines, respectively, and WT is wild type. Different lowercase letters indicate significant differences among different materials with the same treatment(P<0.05)."
Fig.8
Phenotype observation of Arabidopsis under high temperature stress A: Performance of Arabidopsis overexpressing CpBBX24 under high treatment; B: Measurement of relative conductivity; C: Measurement of the molar concentration of malondialdehyde. OE-2, OE-5 and OE-8 indicate low, medium and high expression levels of transgenic lines, respectively, and WT is wild type. Different lowercase letters indicate significant differences among different materials with the same treatment (P<0.05)."
Fig.9
Phenotype observation of Arabidopsis under low temperature stress A: Performance of Arabidopsis overexpressing CpBBX24 under low treatment; B: Measurement of relative conductivity; C: Measurement of the molar concentration of malondialdehyde. OE-2, OE-5 and OE-8 indicate low, medium and high expression levels of transgenic lines, respectively, and WT is wild type. Different lowercase letters indicate significant differences among different materials with the same treatment (P<0.05)."
刘道凤, 王 霞, 代 银, 等. 蜡梅转录因子CpTAF10基因的克隆及功能分析. 林业科学, 2019, 55 (6): 176- 183. | |
Liu D F, Wang X, Dai Y, et al. Cloning and function analysis of CpTAF10 from wintersweet (Chimonanthus praecox). Scientia Silvae Sinicae, 2019, 55 (6): 176- 183. | |
刘亚男. 2019. 菊花CmBBX24.1和CmBBX22调控干旱胁迫的机理研究. 南京: 南京农业大学. | |
Liu Y N. 2019. Molecular mechanisms of CmBBX24.1 and CmBBX22 involved in Chrysanthemum drought tolerance. Nanjing: Nanjing Agricultural University. [in Chinese] | |
王日红, 宋敏燕, 王 然, 等. 山梨B-box基因PuBBX24表达特性及其在童期调控中的功能分析. 园艺学报, 2019, 46 (8): 1458- 1472. | |
Wang R H, Song M Y, Wang R, et al. Expression pattern and function in juvenile regulation of B-box gene PuBBX24 in Pyrus ussuriensis. Acta Hourticulturae Sinica, 2019, 46 (8): 1458- 1472. | |
张 超, 骆 鹰, 谢 旻, 等. 水稻锌指蛋白基因OsBBX24响应热胁迫的研究. 分子植物育种, 2017, 15 (6): 2035- 2041. | |
Zhang C, Luo Y, Xie M, et al. The research of zinc finger family gene OsBBX24 in response to heat stress in rice. Molecular Plant Breeding, 2017, 15 (6): 2035- 2041. | |
Agnieszka, K M, Pascal R, Tadeusz R, 2014. Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum double B-box gene. Annals of Botany, 113(5): 831-842. | |
Holtan H E, Bandong S, Marion C M, et al. BBX32, an Arabidopsis B-Box protein, functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21. Plant Physiology, 2011, 156 (4): 2109- 2123.
doi: 10.1104/pp.111.177139 |
|
Huang J Y, Zhao X B, Weng X Y, et al. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS One, 2012, 7 (10): e48242.
doi: 10.1371/journal.pone.0048242 |
|
Huang S J, Chen C H, Xu M X, et al. Overexpression of Ginkgo BBX25 enhances salt tolerance in transgenic Populus. Plant Physiology and Biochemistry, 2021, 167, 946- 954.
doi: 10.1016/j.plaphy.2021.09.021 |
|
Khanna R, Kronmiller B, Maszle D R, et al. The Arabidopsis B-box zinc finger family. The Plant Cell, 2009, 21 (11): 3416- 3420.
doi: 10.1105/tpc.109.069088 |
|
Lira B S, Oliveira M J, Shiose L, et al. Light and ripening-regulated BBX protein-encoding genes in Solanum lycopersicum. Scientific Reports, 2020, 10 (1): 19235.
doi: 10.1038/s41598-020-76131-0 |
|
Liu X, Li R, Dai Y Q, et al. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome. Molecular Genetics and Genomics, 2018, 293 (2): 303- 315.
doi: 10.1007/s00438-017-1386-1 |
|
Liu X, Li R, Dai Y Q, et al. A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Molecular Biology, 2019, 99 (4): 437- 447. | |
Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. Journal of Experimental Botany, 2003, 54 (391): 2231- 2237.
doi: 10.1093/jxb/erg241 |
|
Ren L P, Zhang J B, Cao X H, et al. Transcriptome-wide identification and functional characterization of BBX transcription factor family in Toona sinensis. Pakistan Journal of Botany, 2021, 53 (3): 915- 921. | |
Sánchez J P, Duque P, Chua N H. ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. The Plant Journal, 2004, 38 (3): 381- 395.
doi: 10.1111/j.1365-313X.2004.02055.x |
|
Shalmani A, Jing X Q, Shi Y, et al. Characterization of B-BOX gene family and their expression profiles under hormonal, abiotic and metal stresses in Poaceae plants. BMC Genomics, 2019, 20 (1): 1- 22.
doi: 10.1186/s12864-018-5379-1 |
|
Sui S Z, Luo J H, Ma J, et al. Generation and analysis of expressed sequence tags from Chimonanthus praecox (wintersweet) flowers for discovering stress-responsive and floral development-related genes. Comparative and Functional Genomics, 2012, 2012, 134596. | |
Wang Q M, Tu X J, Zhang J H, et al. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Molecular Biology Reports, 2013, 40 (3): 2679- 2688.
doi: 10.1007/s11033-012-2354-9 |
|
Wen S Y, Zhang Y, Deng Y, et al. Genomic identification and expression analysis of the BBX transcription factor gene family in Petunia hybrida. Molecular Biology Reports, 2020, 47 (8): 6027- 6041.
doi: 10.1007/s11033-020-05678-y |
|
Wu H F, Wang X, Cao Y Z, et al. CpBBX19, a B-box transcription factor gene of Chimonanthus praecox, improves salt and drought tolerance in Arabidopsis. Genes, 2021, 12 (9): 1456.
doi: 10.3390/genes12091456 |
|
Yang Y J, Ma C, Xu Y J, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis. The Plant Cell, 2014, 26 (5): 2038- 2054.
doi: 10.1105/tpc.114.124867 |
|
Zou Z Y, Wang R H, Wang R, et al. Genome-wide identification, phylogenetic analysis, and expression profiling of the BBX family genes in pear. The Journal of Horticultural Science and Biotechnology, 2018, 93 (1): 37- 50.
doi: 10.1080/14620316.2017.1338927 |
[1] | Che Bingyan, Yu Shangyan, Li Zhineng, Li Xianyuan. Expression Characteristics and Functional Analysis of Gene CpUFO Related to Flower Development of Chimonanthus praecox [J]. Scientia Silvae Sinicae, 2024, 60(2): 87-96. |
[2] | Minxia Ren,Tan Li,Ziheng Zhang,Yuexia Zeng,Lifeng Wang,Minsheng Yang,Junxia Liu. Effects of Transgenic BtCry1Ac and API gene in Poplar 107 on Diversity and Stability of Arthropod Community [J]. Scientia Silvae Sinicae, 2022, 58(4): 110-118. |
[3] | Junguang Yao,Ya Geng,Yijing Liu,Yi An,Lichao Huang,Wei Zeng,Mengzhu Lu. Effects of S-Adenosylmethionine Decarboxylase Gene on Drought Tolerance of Populus alba × P. glandulosa '84K' [J]. Scientia Silvae Sinicae, 2022, 58(2): 125-132. |
[4] | Li Cao,Yang Wang,Yunli Yang,Yu Zheng,Wei Wang,Guifeng Liu,Jing Jiang. Growth Variation, Rhizosphere Soil Enzyme Activity and Microbial Community Composition of Transgenic BpGLK Betula pendula 'Dplecprlicp' [J]. Scientia Silvae Sinicae, 2022, 58(12): 21-31. |
[5] | Weixi Zhang,Yanbo Wang,Changjun Ding,Wenxu Zhu,Xiaohua Su. Detection of Horizontal Transfer of the Exogenous Gene in Adult Trees of Transgenic Populus alba × P. berolinensis in a Field Trial and Successive Years of Monitoring of Soil Microorganism [J]. Scientia Silvae Sinicae, 2022, 58(1): 52-61. |
[6] | Wenjing Shen,Li Zhang,Laipan Liu,Zhixiang Fang,Biao Liu. Effects of cry1Ac Transgenic Populus nigra on Growth, Development, and Reproduction of the Earthworm Eisenia foetida [J]. Scientia Silvae Sinicae, 2021, 57(12): 92-98. |
[7] | Weibo Sun,Xindong Gong,Yan Zhou,Hongyan Li. Photosynthetic Characteristics of Transgenic Poplars with Maize PEPC and PPDK Gene at Young Plant Stage [J]. Scientia Silvae Sinicae, 2020, 56(7): 33-43. |
[8] | Xing Wu,Xingfeng Hu,Peizhen Chen,Xiaobo Sun,Fan Wu,Kongshu Ji. Cloning and Functional Analysis of PmPIN1 Gene from Pinus massoniana [J]. Scientia Silvae Sinicae, 2020, 56(3): 184-192. |
[9] | Yuan Li,Jinhuan Chen,Zhao Jin,Jingya Hou,Yusong Jiang,Haitao Xing. Functions of NAC128 Gene from Populus trichocarpa in Secondary Cell Wall Formation [J]. Scientia Silvae Sinicae, 2020, 56(11): 62-72. |
[10] | Lei Zhang,Jianjun Hu. An Analysis of T-DNA Insertion Loci and Detection of the Locus-Specific of Transgenic Populus nigra Lines with BtCry1Ac [J]. Scientia Silvae Sinicae, 2020, 56(10): 45-52. |
[11] | Weibo Sun,Zhaoqiong Wei,Xiaoxing Ma,Hui Wei,Qiang Zhuge. Safety Assessment of a Field Trial of Three Types of Transgenic Poplar Nanlin895 [J]. Scientia Silvae Sinicae, 2020, 56(10): 53-62. |
[12] | Zhang Chao, Wang Jinmao, Zhao Jie, Pang Dingwei, Zhang Dejian, Yang Minsheng. Expression Characteristics of Bt Gene in Transgenic Poplar Transformed by Different Multi-Gene Vectors [J]. Scientia Silvae Sinicae, 2019, 55(9): 61-70. |
[13] | Li Zhineng, Jiang Yingjie, Chen Jing, Li Ting, Sui Shunzhao, Li Mingyang. Expression and Function of CpWOX13 Gene in Chimonanthus praecox [J]. Scientia Silvae Sinicae, 2019, 55(7): 77-85. |
[14] | Liu Daofeng, Wang Xia, Dai Yin, Yang Jianfeng, Ma Jing, Li Mingyang, Sui Shunzhao. Cloning and Function Analysis of CpTAF10 from Wintersweet (Chimonanthus praecox) [J]. Scientia Silvae Sinicae, 2019, 55(6): 176-183. |
[15] | Ma Jing, Li Zheng, Chen Xinli, Zhang Shengyan, Sui Shunzhao, Li Mingyang. Cloning and Activity Analysis of CpEXP1 Gene Promoter from Chimonanthus praecox [J]. Scientia Silvae Sinicae, 2018, 54(3): 61-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||