Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (11): 23-32.doi: 10.11707/j.1001-7488.LYKX20220428
Previous Articles Next Articles
Hao Zhou1(),Baiketuerhan Yeerjiang2,Huaijiang He3,Chunyu Zhang1,Xiuhai Zhao1,Minhui Hao1,*(
)
Received:
2022-06-23
Accepted:
2023-08-25
Online:
2023-11-25
Published:
2023-12-08
Contact:
Minhui Hao
E-mail:1533706828@qq.com;haomh0515@163.com
CLC Number:
Hao Zhou,Baiketuerhan Yeerjiang,Huaijiang He,Chunyu Zhang,Xiuhai Zhao,Minhui Hao. Biomass Distribution Characteristics and Species-Specific Allometric Equations for Afforestation Species in Northeast China[J]. Scientia Silvae Sinicae, 2023, 59(11): 23-32.
Table 1
Form of biomass equation"
方程代码 Equation code | 方程类型 Model styles | 方程形式 Equations form | 方程代码 Equation code | 方程类型 Model styles | 方程形式 Equations form |
Eq.1 | 对数Logarithmic | lnY=lna+blnH | Eq.8 | 一元二次Quadratic | Y=aH2+b |
Eq.2 | 对数Logarithmic | lnY=lna+blnD | Eq.9 | 一元二次Quadratic | Y=aD2+b |
Eq.3 | 对数Logarithmic | lnY=lna+bln(D2H) | Eq.10 | 一元二次Quadratic | Y=aH+bH2+c |
Eq.4 | 对数Logarithmic | lnY=lna+blnH+clnD | Eq.11 | 一元二次Quadratic | Y=aD+bD2+c |
Eq.5 | 一元线性Linear | Y=aH+b | Eq.12 | 多元二次Multivariate quadratic | Y=aH+bD2+c |
Eq.6 | 一元线性Linear | Y=aD+b | Eq.13 | 多元二次Multivariate quadratic | Y=aD+bH2+c |
Eq.7 | 多元线性Multiple linear | Y=aH+bD+c | Eq.14 | 多元二次Multivariate quadratic | Y=aH2+bD2+c |
Table 2
Optimal biomass model for each component"
树种 Species | 组分 Components | 方程形式 Equation form | 系数Coefficients | 拟合优度 R2 | 显著性 P | 校正因子 CF | ||
a | b | c | ||||||
白桦 Betula platyphylla | 地上生物量 Aboveground biomass | Y=a(D2H)b | 0.021* | 0.775 * | 0.87 | <0.05 | 1.001 | |
整株生物量 Total biomass | Y=a(D2H)b | 0.023 * | 0.794 * | 0.83 | <0.05 | 1.001 | ||
根系生物量 Root biomass | Y=aDb | 0.088 * | 2.133 * | 0.67 | <0.05 | 1.010 | ||
茎干生物量 Stem biomass | Y=a(D2H)b | 0.017 * | 0.780 * | 0.88 | <0.05 | 1.001 | ||
叶片生物量 Leaf biomass | Y=a(D2H)b | 0.004 * | 0.757 * | 0.65 | <0.05 | 1.015 | ||
红皮云杉 Picea koraiensis | 地上生物量 Aboveground biomass | Y=a(D2H)b | 0.242 * | 0.545 * | 0.82 | <0.05 | 1.003 | |
整株生物量 Total biomass | Y=aDb | 1.438 * | 1.240 * | 0.83 | <0.05 | 1.003 | ||
根系生物量 Root biomass | Y=aDb | 0.271 * | 1.538 * | 0.78 | <0.05 | 1.073 | ||
茎干生物量 Stem biomass | Y=a(D2H)b | 0.040 * | 0.712 * | 0.90 | <0.05 | 1.006 | ||
叶片生物量 Leaf biomass | Y=aDb | 0.982 * | 0.852 * | 0.48 | <0.05 | 1.023 | ||
红松 Pinus koraiensis | 地上生物量 Aboveground biomass | Y=a(D2H)b | 0.846 * | 0.714 * | 0.77 | <0.05 | 1.003 | |
整株生物量 Total biomass | Y=a(D2H)b | 0.111 * | 0.704 * | 0.81 | <0.05 | 1.002 | ||
根系生物量 Root biomass | Y=aDb | 0.068 * | 1.942 * | 0.84 | <0.05 | 1.011 | ||
茎干生物量 Stem biomass | Y=a(D2H)b | 0.016 * | 0.809 * | 0.83 | <0.05 | 1.007 | ||
叶片生物量 Leaf biomass | Y=a(D2H)b | 0.082 * | 0.655 * | 0.67 | <0.05 | 1.007 | ||
黄檗 Phellodendron amurense | 地上生物量 Aboveground biomass | Y=a(D2H)b | 0.017 * | 0.766 * | 0.83 | <0.05 | 1.003 | |
整株生物量 Total biomass | Y=a(D2H)b | 0.029 * | 0.752 * | 0.80 | <0.05 | 1.003 | ||
根系生物量 Root biomass | Y=aDb | 0.051 * | 2.249 * | 0.72 | <0.05 | 1.009 | ||
茎干生物量 Stem biomass | Y=a(D2H)b | 0.005 * | 0.866 * | 0.87 | <0.05 | 1.003 | ||
叶片生物量 Leaf biomass | Y=aDb | 0.214 * | 1.249 * | 0.41 | <0.05 | 1.049 | ||
怀槐 Maackia amurensis | 地上生物量 Aboveground biomass | Y=aDbHc | 0.033 * | 2.071 * | 0.464 * | 0.74 | <0.05 | 1.002 |
整株生物量 Total biomass | Y=aDb | 0.274 * | 2.289 * | 0.62 | <0.05 | 1.002 | ||
根系生物量 (Root biomass) | Y=aDb | 0.142 * | 2.274 * | 0.49 | <0.05 | 1.004 | ||
茎干生物量 Stem biomass | Y=a(D2H)b | 0.012 * | 0.857 * | 0.73 | <0.05 | 1.003 | ||
叶生物量 Leaf biomass | Y=aDb | 0.124 * | 1.704 * | 0.38 | <0.05 | 1.010 | ||
色木槭 Acer mono | 地上生物量 Aboveground biomass | Y=aHb | 0.007 * | 1.729 * | 0.58 | <0.05 | 1.009 | |
整株生物量 Total biomass | Y=a(D2H)b | 0.135 * | 0.590 * | 0.67 | <0.05 | 1.004 | ||
根系生物量 Root biomass | Y=a(D2H)b | 0.051 * | 0.583 * | 0.62 | <0.05 | 1.011 | ||
茎干生物量 Stem biomass | Y=aDbHc | 0.005 * | 0.959 * | 1.299 * | 0.72 | <0.05 | 1.010 | |
叶片生物量 Leaf biomass | Y=aHb | 0.052 * | 0.998 * | 0.22 | <0.05 | 1.063 | ||
蒙古栎 Quercus mongolica | 地上生物量 Aboveground biomass | Y=aDb | 0.593 * | 1.394 * | 0.71 | <0.05 | 1.003 | |
整株生物量 Total biomass | Y=aDb | 2.155 * | 1.152 * | 0.52 | <0.05 | 1.003 | ||
根系生物量 Root biomass | Y=aDb | 1.719 * | 0.966 * | 0.31 | <0.05 | 1.008 | ||
茎干生物量 Stem biomass | Y=a(D2H)b | 0.021 * | 0.715 * | 0.79 | <0.05 | 1.006 | ||
叶片生物量 Leaf biomass | Y=aDb | 0.529 * | 0.920 * | 0.36 | <0.05 | 1.023 | ||
水曲柳 Fraxinus mandshurica | 地上生物量 Aboveground biomass | Y=a(D2H)b | 0.051 * | 0.698 * | 0.63 | <0.05 | 1.003 | |
整株生物量 Total biomass | Y=a(D2H)b | 0.154 * | 0.620 * | 0.49 | <0.05 | 1.003 | ||
根系生物量 Root biomass | Y=a(D2H)b | 0.290 | 0.427 | 0.16 | 0.08 | 1.015 | ||
茎干生物量 Stem biomass | Y=a(D2H)b | 0.038 * | 0.715 * | 0.65 | <0.05 | 1.003 | ||
叶片生物量 Leaf biomass | Y=a(D2H)b | ?0.582 | 0.019 | 0.18 | 0.06 | 1.187 | ||
胡桃楸 Juglans mandshurica | 地上生物量 Aboveground biomass | Y=aHb | 0.339 * | 0.877 * | 0.65 | <0.05 | 1.004 | |
整株生物量 Total biomass | Y=aHb | 1.759 * | 0.595 * | 0.47 | <0.05 | 1.003 | ||
根系生物量 Root biomass | Y=aHb | 0.244 | 0.145 | 0.03 | 0.46 | 1.011 | ||
茎干生物量 Stem biomass | Y=aHb | 0.167 * | 0.932 * | 0.75 | <0.05 | 1.004 | ||
叶片生物量 Leaf biomass | Y=aHb | 0.190 * | 0.783 * | 0.31 | <0.05 | 1.051 | ||
紫椴 Tilia amurensis | 地上生物量 Aboveground biomass | Y=aDbHc | 0.002 * | 0.875 * | 1.481 * | 0.66 | <0.05 | 1.004 |
整株生物量 Total biomass | Y=a(D2H)b | 0.025 * | 0.483 * | 0.36 | <0.05 | 1.004 | ||
根系生物量 Root biomass | Y=aHb | 0.239 | 0.178 | 0.00 | 0.78 | 1.020 | ||
茎干生物量 Stem biomass | Y=aDbHc | 0.001 * | 0.954 * | 1.508 * | 0.69 | <0.05 | 1.005 | |
叶片生物量 Leaf biomass | Y=aHb | 0.002 * | 1.611 * | 0.35 | <0.05 | 1.157 | ||
全树种 All species | 地上生物量 Aboveground biomass | Y=aDbHc | 0.296 * | 1.336 * | 0.278 * | 0.56 | <0.05 | 1.013 |
整株生物量 Total biomass | Y=aDbHc | 0.434 * | 1.423 * | 0.248 * | 0.60 | <0.05 | 1.008 | |
根系生物量 Root biomass | Y=aDbHc | 0.114 * | 1.549 * | 0.242 * | 0.49 | <0.05 | 1.038 | |
茎干生物量 Stem biomass | Y=a(D2H)b | 0.041 * | 0.664 * | 0.73 | <0.05 | 1.019 | ||
叶片生物量 Leaf biomass | Y=aDbHc | 2.595 * | 0.985 * | ?0.352 * | 0.14 | <0.05 | 1.115 |
代海军, 何怀江, 赵秀海, 等. 阔叶红松林两种主要树种的生物量分配格局及异速生长模型. 应用与环境生物学报, 2013, 19 (4): 718- 722.
doi: 10.3724/SP.J.1145.2013.00718 |
|
Dai H J, He H J, Zhao X H, et al. Biomass allocation patterns and allometric models of two dominant tree species in broad-leaved and Korean pine mixed forest. Chinese Journal of Applied and Environmental Biology, 2013, 19 (4): 718- 722.
doi: 10.3724/SP.J.1145.2013.00718 |
|
董 点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程. 北京林业大学学报, 2014, 36 (4): 54- 63. | |
Dong D, Lin T X, Tang J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis. Journal of Beijing Forestry University, 2014, 36 (4): 54- 63. | |
董利虎. 2015a. 东北林区主要树种及林分类型生物量模型研究. 哈尔滨: 东北林业大学. | |
Dong L H. 2015a. Developing individual and stand-level biomass equations in northeast China forest area. Haerbin: Northeast Forestry University.[in Chinese] | |
董利虎, 李凤日, 宋玉文. 东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型. 应用生态学报, 2015b, 26 (3): 704- 714. | |
Dong L H, Li F R, Song Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China. Chinese Journal of Applied Ecology, 2015b, 26 (3): 704- 714. | |
董利虎, 张连军, 李凤日. 立木生物量模型的误差结构和可加性. 林业科学, 2015c, 51 (2): 28- 36. | |
Dong L H, Zhang L J, Li F R. Error structure and additivity of individual tree biomass model. Scientia Silvae Sinicae, 2015c, 51 (2): 28- 36. | |
范春楠, 庞圣江, 郑金萍, 等. 长白山林区14种幼树生物量估测模型. 北京林业大学学报, 2013, 35 (2): 9. | |
Fan C N, Pang S J, Zheng J P, et al. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, northeastern China. Journal of Beijing Forestry University, 2013, 35 (2): 9. | |
费 玲, 钟全林, 程栋梁, 等. 2016. 天然阔叶林与杉木人工林灌木层地上地下生物量的分配关系. 林业科学, 52(3): 97−104. | |
Fei L, Zhong Q L, Cheng D L, et al. 2016. Biomass allocation between aboveground-and underground of shrub layer vegetation in natural evergreen broad-leaved forest and Chinese fir plantation. 52(3): 97−104.[in Chinese] | |
冯宗炜. 1999. 中国森林生态系统的生物量和生产力. 北京: 科学出版社. | |
Feng Z W. 1999. Biomass and productivity of forest ecosystem in China. Beijing: Science Press.[in Chinese] | |
何怀江. 2018. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响. 北京: 北京林业大学. | |
He H J. 2018. Effects of thinning disturbance on carbon storage and carbon balance in coniferous and broad-leaved mixed forest in JiaoheJilin Province. Beijing: Journal of Beijing Forestry University.[in Chinese] | |
侯燕南, 吴惠俐. 非线性回归方法建立亚热带常绿阔叶树种地上生物量相对生长方程. 中南林业科技大学学报, 2016, 36 (12): 98- 101,107. | |
Hou Y N, Wu H L. Using nonlinear regression method to develop allometric equations for aboveground biomass estimate of three evergreen broadleaved tree species in subtropical China. Journal of Central South University of Forestry & Technology, 2016, 36 (12): 98- 101,107. | |
李晓娜, 国庆喜, 王兴昌, 等. 东北天然次生林下木树种生物量的相对生长. 林业科学, 2010, 46 (8): 22- 32. | |
Li X N, Guo Q X, Wang X C, et al. Allometry of understory tree species in a natural secondary forest in northeast China. Scientia Silvae Sinicae, 2010, 46 (8): 22- 32. | |
黎燕琼, 郑绍伟, 龚固堂, 等. 不同年龄柏木混交林下主要灌木黄荆生物量及分配格局. 生态学报, 2010, 30 (11): 2809- 2818. | |
Li Y Q, Zheng S W, Gong G T, et al. Biomass and its allocation of undergrowth Vitex negundo L. in different classes of mixed cypress forest. Acta Ecologica Sinica, 2010, 30 (11): 2809- 2818. | |
林 力. 2011. 马尾松人工林生物量模型的研究. 福州: 福建农林大学. | |
Lin L. 2011. Studies on the Biomass model of Pinus massoniana plantations. Fuzhou: Fujian Agriculture and Forestry University.[in Chinese] | |
罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展. 林业科学, 2009, 45 (8): 129- 134. | |
Luo Y J, Zhang X Q, Wang X K, et al. Forest biomass estimation methods and their prospects. Scientia Silvae Sinicae, 2009, 45 (8): 129- 134. | |
毛子军. 森林生态系统碳平衡估测方法及其研究进展. 植物生态学报, 2002, (6): 731- 738. | |
Mao Z J. Summary of estimation methods and research advances of the carbon balance of forest ecosystem. Chinese Journal of Plant Ecology, 2002, (6): 731- 738. | |
孙 越, 何怀江, 李 良, 等. 阔叶红松林下6种早夏草本不同生长期生物量分配及模型构建. 生态学报, 2017, 37 (19): 6523- 6533. | |
Sun Y, He H J, Li L, et al. Biomass allocation and biomass allometric models of six early-summer herbs under the canopy of broad-leaved Korean pine forest during different growth periods in Jiaohe, Jilin Province. Acta Ecologica Sinica, 2017, 37 (19): 6523- 6533. | |
唐守正, 张会儒, 胥 辉. 相容性生物量模型的建立及其估计方法研究. 林业科学, 2000, 36 (s1): 19- 27. | |
Tang S Z, Zhang H R, Xu H. Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinicae, 2000, 36 (s1): 19- 27. | |
王春梅, 王金达, 刘景双, 等. 东北地区森林资源生态风险评价研究. 应用生态学报, 2003,, 14 (6): 863- 866.
doi: 10.3321/j.issn:1001-9332.2003.06.006 |
|
Wang C M, Wang J D, Liu J S, et al. Ecological risk assessment of forest resource in northeast China. Chinese Journal of Applied Ecology, 2003,, 14 (6): 863- 866.
doi: 10.3321/j.issn:1001-9332.2003.06.006 |
|
王 淼, 李秋荣, 郝占庆, 等. 土壤水分变化对长白山主要树种蒙古栎幼树生长的影响. 应用生态学报, 2004, (10): 1765- 1770. | |
Wang M, Li Q R, Hao Z Q, et al. Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains. Chinese Journal of Applied Ecology, 2004, (10): 1765- 1770. | |
杨 瑞, 喻理飞, 罗 云, 等. 喀斯特森林林分环境对光皮桦幼树生物量的影响. 南京林业大学学报(自然科学版), 2009, 33 (1): 143- 145. | |
Yang R, Yu L F, Luo Y, et al. Effects of different environment of Karst forest on the biomass of Betula luminifera saplings. Journal of Nanjing Forestry University(Natural Sciences Edition), 2009, 33 (1): 143- 145. | |
宇万太, 于永强. 植物地下进展. 应用生态学报, 2001, 12 (6): 927- 932. | |
Yu W T, Yu Y Q. Advances in the rescarch of underground biomass. Chinese Journal of Applied Ecology, 2001, 12 (6): 927- 932. | |
张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究. 北京林业大学学报, 2009, 41 (5): 1- 18. | |
Zhang H R, Lei X D, Zhang C Y, et al. Research on theory and technology of forest quality evaluation and precision improvement. Journal of Beijing Forestry University, 2009, 41 (5): 1- 18. | |
张梦弢, 亢新刚, 蔡 烁. 长白山云冷杉林下主要树种幼树生物量. 浙江农林大学学报, 2012, 29 (5): 655- 660. | |
Zhang M T, Kang X G, Cai S. Biomass for saplings of primary species in a spruce-fir understory of the Changbai Mountains. Journal of Zhejiang A & F University, 2012, 29 (5): 655- 660. | |
张小全, 朱建华, 侯振宏. 主要发达国家林业有关碳源汇及其计量方法与参数. 林业科学研究, 2009, 22 (2): 285- 293. | |
Zhang X Q, Zhu Z H, Hou Z H. Carbon removals/sources of forests and forest conversion and applie carbon accounting methods and parameters in major developed Count. Forest Research, 2009, 22 (2): 285- 293. | |
赵厚本, 周光益, 李兆佳, 等. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型. 林业科学, 2022, 58 (2): 23- 31. | |
Zhao H B, Zhou G Y, Li Z J, et al. Biomass allocation and allometric growth models of four common tree species in southern subtropical evergreen broad-leaved forest. Scientia Silvae Sinicae, 2022, 58 (2): 23- 31. | |
Alaback P B. Biomass regression equations for understory plants in coastal Alaska: effects of species and sampling design on estimates. Northwestence, 1986, 60 (2): 90- 103. | |
Bond-Lamberty B, Wang C, Gower S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research, 2002, 32 (8): 1441- 1450.
doi: 10.1139/x02-063 |
|
Chambers J Q, Joaquim D S, Ralfh J R, et al. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 2001, 152 (1-3): 73- 84.
doi: 10.1016/S0378-1127(00)00591-0 |
|
Chave J, Andalo C, Brown S, et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145(1): 87−99. | |
Cienciala E, Černý M, Tatarinov F, et al. Biomass functions applicable to Scots pine. Trees, 2006, 20 (4): 483- 495.
doi: 10.1007/s00468-006-0064-4 |
|
Duncanson L I, Dubayah R O, Enquist B J. Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States. Global Ecology and Biogeography, 2015, 24 (12): 1465- 1475. | |
Fournier R A, Luther J E, Guindon L, et al. Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec. Canadian Journal of Forest Research, 2003, 33, 1846- 1863.
doi: 10.1139/x03-099 |
|
Hendrik P, Niklas J K, Reich B P, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. The New Phytologist, 2012, 193 (1): 30- 50.
doi: 10.1111/j.1469-8137.2011.03952.x |
|
Hossain M, Saha C, Rubaiot Abdullah S M, et al. Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees, 2016, 30 (3): 709- 717.
doi: 10.1007/s00468-015-1314-0 |
|
McCarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 2007, 21 (4): 713- 720.
doi: 10.1111/j.1365-2435.2007.01276.x |
|
Peichl M, Arain M A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 2007, 253 (1-3): 68- 80. | |
Roxburgh S H, Paul K I, Clifford D, et al. Guidelines for constructing allometric models for the prediction of woody biomass: how many individuals to harvest?. Ecosphere, 2016, 6 (3): 1- 27. | |
Tobner C M, Paquette A Gravel D, et al. Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 2016, 19 (6): 638- 647.
doi: 10.1111/ele.12600 |
|
Ubuy M H, Eid T, Bollandsås O M, et al. Aboveground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. Journal of Arid Environments, 2018, 156, 9- 18.
doi: 10.1016/j.jaridenv.2018.05.007 |
|
Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 2006, 222 (1-3): 9- 16.
doi: 10.1016/j.foreco.2005.10.074 |
|
Wang C K, Bond-Lamberty B, Gower S T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia, 2002, 132 (3): 374- 381.
doi: 10.1007/s00442-002-0987-4 |
|
Weiner J. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6 (4): 207- 215. | |
Xie X F, Hu Y K, Pan X, et al. Biomass allocation of stoloniferous and rhizomatous plant in response toresource availability: a phylogenetic meta-analysis. Frontiers in Plant Science, 2016, 7, 603. |
[1] | Yang Tao, Qiu Yongbin, Shen Han, Zheng Chengzhong, Zhang Zhen, Wang Wenyue, Jin Guoqing, Zhou Zhichun. Early Evaluation of Carbon Content of Cypress Clones and Families and Selection of Superior Strains [J]. Scientia Silvae Sinicae, 2023, 59(9): 85-94. |
[2] | Yancheng Qu,Yihang Jiang,Yanyan Jiang,Jianguo Zhang,Anli Luo,Xiongqing Zhang. Tree Leaf Biomass Models of Chinese fir Plantations Based on Sapwood Area and Diameter at Breast Height and Diameter at Crown Base [J]. Scientia Silvae Sinicae, 2023, 59(7): 106-114. |
[3] | Ye Wang,Guangde Li,Guobin Liu,Ting Liao,Liqin Guo,Yanwu Yao,Jun Cao. Plasticity Responses of Phenological Characteristics and Tree Growth of Populus tomentosa Plantation to Fertilization [J]. Scientia Silvae Sinicae, 2023, 59(5): 32-40. |
[4] | Wei Wang,Han Zhao,Xin Huang,Zhuoliang Hou,Zaimin Jiang,Jing Cai. Relationship Between Leaf Hydraulic and Economic Traits and Biomass of Poplar Clones [J]. Scientia Silvae Sinicae, 2023, 59(10): 89-98. |
[5] | Xue Zhang,Dongmei Wang,Wenjie Wen,Ruosha Liu. Seasonal Patterns in Fine Root Biomass and Nutrient Storage of Four Plantations in the Alpine Region of Qinghai Province [J]. Scientia Silvae Sinicae, 2022, 58(6): 13-22. |
[6] | Longfei Hao,Tingyan Liu,Yongqin He,Shengxi Zhang,Yuan Zhao. Responses of Rhizosphere Soil Stoichiometry of Clematis fruticosa Inoculated with Arbuscular Mycorrhizal Fungi to Nitrogen Deposition [J]. Scientia Silvae Sinicae, 2022, 58(6): 151-160. |
[7] | Zipeng Zhang,Junjie Wang,Suoming Liu,Lichun Jiang. Effect of Form Quotient on Prediction Accuracy of Individual Tree Volume and Biomass of Betula platyphylla [J]. Scientia Silvae Sinicae, 2022, 58(5): 31-39. |
[8] | Huiling Tian,Jianhua Zhu,Xiao He,Xinyun Chen,Zunji Jian,Chenyu Li,Xueyuan Guo,Guosheng Huang,Wenfa Xiao. Projected Biomass Carbon Stock of Arbor Forest of Three Provinces in Northeastern China Based on Random Forest Model [J]. Scientia Silvae Sinicae, 2022, 58(4): 40-50. |
[9] | Cong Li,Jinghua Lu,Mei Lu,Zhidong Yang,Pan Liu,Yulian Ren,Fan Du. Distribution of Soil Microbial Biomass Carbon and Nitrogen across Different Altitudinal Vegetation Zones in Wenshan National Nature Reserve [J]. Scientia Silvae Sinicae, 2022, 58(3): 20-30. |
[10] | Yonglei Shi,Zhihui Wang,Shiming Li,Chunyi Li,Peiqing Xiao,Pan Zhang,Xiaoge Chang. A Method of Estimation Aboveground Biomass of Sparse Tree-Shrub Using Optical Remote Sensing [J]. Scientia Silvae Sinicae, 2022, 58(2): 13-22. |
[11] | Xiao Fu,Yuxing Zhang,Xuejun Wang. Prediction of Forest Biomass Carbon Pool and Carbon Sink Potential in China before 2060 [J]. Scientia Silvae Sinicae, 2022, 58(2): 32-41. |
[12] | Sha Zhou,Huanfei Ma,Jieying Wang,Chengjie Ren,Yaoxin Guo,Jun Wang,Fazhu Zhao. Latitudinal Distribution of Forest Soil Microbial Biomass Carbon and Its Affecting Factors in China [J]. Scientia Silvae Sinicae, 2022, 58(2): 49-57. |
[13] | Shuijin Yu,Juan Wang,Haiyan He,Chunyu Zhang,Xiuhai Zhao. Driving Factors of the Temporal Stability of Biomass of Mixed Broadleaf-Conifer Forest [J]. Scientia Silvae Sinicae, 2022, 58(11): 181-190. |
[14] | Xingjing Chen,Linyan Feng,Yuchao Zhang,Qingwang Liu,Zhaohui Yang,Liyong Fu,Jinhua Bai. Inversion of Aboveground Biomass in the Core Area of Chongli Winter Olympics Based on Airborne LiDAR [J]. Scientia Silvae Sinicae, 2022, 58(10): 35-46. |
[15] | Hailian Xue,Xianglin Tian,Tianjian Cao. Optimizing Parameters of a Process-Based Model for Pinus armandii: A Compromise between Empirical and Process-Based Modelling Approaches [J]. Scientia Silvae Sinicae, 2021, 57(9): 21-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||