Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 46-56.doi: 10.11707/j.1001-7488.LYKX20230642
• Technology and application of smart forestry and grassland • Previous Articles Next Articles
Lixia Chen1,2(),Feng Lu3,Hongxing Jiang2,Ge Sun2,Xiupeng Yue3,Yixuan Wang2,Tong Gao2,Xingbo Hu4,Changqing Ding1,*
Received:
2023-12-26
Online:
2024-08-25
Published:
2024-09-03
Contact:
Changqing Ding
E-mail:chenlixia9530@163.com
CLC Number:
Lixia Chen,Feng Lu,Hongxing Jiang,Ge Sun,Xiupeng Yue,Yixuan Wang,Tong Gao,Xingbo Hu,Changqing Ding. Predicting the Distribution of Suitable Habitats for Oriental Storks Based on Satellite Tracking in Yellow River Delta[J]. Scientia Silvae Sinicae, 2024, 60(8): 46-56.
Table S1
Basic information of satellite tracking of Oriental stork in Yellow River Delta"
序号 Number | 彩环编号 Color ring number | 性别 Sex | 体重 Weight/g | 跟踪数据起止日期 Tracking date |
1 | S48 | 雌性 Female | 4 540 | 2016–05–27—2018–02–28 |
2 | S49 | 雌性 Female | 4 200 | 2016–05–27—2018–07–13 |
3 | R53 | 雄性 Male | 5 330 | 2019–05–27—2019–12–30 |
4 | R52 | 雌性 Female | 4 301 | 2019–05–27—2019–07–06 |
5 | R45 | 雄性 Male | 4 240 | 2019–05–27—2019–08–31 |
6 | R62 | 雄性 Male | 5 490 | 2019–05–27—2019–08–31 |
7 | R47 | 雄性 Male | 4 725 | 2019–05–27—2020–02–29 |
8 | R54 | 雄性 Male | 5 280 | 2019–05–27—2020–02–29 |
9 | R81 | 雌性 Female | 4 740 | 2019–05–27—2020–02–29 |
10 | R50 | 雌性 Female | 4 210 | 2019–05–27—2020–02–07 |
11 | R80 | 雌性 Female | 4 250 | 2019–05–27—2020–07–06 |
12 | R51 | 雄性 Male | 4 645 | 2019–05–27—2020–08–15 |
13 | R89 | 雌性 Female | 3 600 | 2019–05–27—2020–08–31 |
14 | R57 | 雄性 Male | 5 565 | 2019–05–27—2021–02–28 |
15 | R46 | 雄性 Male | 4 880 | 2019–05–27—2021–07–13 |
16 | R58 | 雌性 Female | 4 395 | 2019–05–27—2021–08–31 |
17 | S94 | 雄性 Male | 3 825 | 2019–05–27—2021–08–31 |
18 | R61 | 雄性 Male | 5 330 | 2019–05–27—2021–08–08 |
19 | R86 | 雌性 Female | 3 380 | 2019–05–27—2022–12–08 |
20 | R59 | 雄性 Male | 5 295 | 2019–05–27—2022–07–22 |
21 | R43 | 雄性 Male | 4 265 | 2019–05–27—2022–07–28 |
22 | R90 | 雌性 Female | 4 075 | 2019–05–27—2022–08–17 |
23 | R55 | 雄性 Male | 5 165 | 2019–05–27—2022–08–31 |
24 | S95 | 雄性 Male | 3 150 | 2019–05–27—2022–08–08 |
25 | R91 | 雄性 Male | 4 160 | 2019–05–27—2023–6–25 |
26 | R48 | 雌性 Female | 4 045 | 2019–05–27—2023–07–31 |
27 | R85 | 雌性 Female | 3 200 | 2019–05–27—2023–08–05 |
28 | R52 | 雌性 Female | 4 301 | 2019–05–27—2023–08–06 |
29 | R44 | 雄性 Male | 5 360 | 2019–05–27—2023–08–06 |
30 | R56 | 雄性 Male | 5 340 | 2019–05–27—2023–08–06 |
31 | R60 | 雌性 Female | 4 360 | 2019–05–27—2023–08–06 |
32 | S98 | 雄性 Male | 5 710 | 2019–05–27—2023–08–06 |
33 | R87 | 雄性 Male | 5 200 | 2019–05–27—2023–08–06 |
34 | R88 | 雌性 Female | 4 300 | 2019–05–27—2023–08–06 |
35 | 4C1 | 雄性 Male | 5 295 | 2020–05–27—2021–01–29 |
36 | 4C1 | 雄性 Male | 5 295 | 2020–05–27—2021–06–06 |
37 | 4C4 | 雌性 Female | 3 815 | 2020–05–27—2022–12–23 |
38 | 4C3 | 雌性 Female | 3 545 | 2020–05–27—2022–02–26 |
39 | 4C5 | 雄性 Male | 4 075 | 2020–05–27—2023–01–05 |
40 | 4C2 | 雌性 Female | 4 433 | 2020–05–27—2023–08–06 |
41 | U28 | 雄性 Male | 6 052 | 2021–05–27—2021–08–10 |
42 | U32 | 雌性 Female | 4 535 | 2021–05–27—2021–08–17 |
43 | U14 | 雌性 Female | 4 715 | 2021–05–27—2021–08–31 |
44 | U20 | 雄性 Male | 5 200 | 2021–05–27—2022–02–28 |
45 | U23 | 雌性 Female | 4 555 | 2021–05–27—2022–07–09 |
46 | U25 | 雌性 Female | 4 551 | 2021–05–27—2022–08–31 |
47 | U31 | 雄性 Male | 5 685 | 2021–05–27—2023–02–28 |
48 | U29 | 雄性 Male | 5 400 | 2021–05–27—2023–02–28 |
49 | U13 | 雄性 Male | 5 755 | 2021–05–27—2023–02–28 |
50 | U33 | 雌性 Female | 4 535 | 2021–05–27—2023–02–05 |
51 | U26 | 雌性 Female | 4 525 | 2021–05–27—2023–06–03 |
52 | U19 | 雌性 Female | 4 625 | 2021–05–27—2023–07–03 |
53 | U24 | 雄性 Male | 5 318 | 2021–05–27—2023–08–05 |
54 | U21 | 雄性 Male | 5 420 | 2021–05–27—2023–08–06 |
55 | U22 | 雄性 Male | 5 750 | 2021–05–27—2023–08–06 |
56 | U30 | 雌性 Female | 4 955 | 2021–05–27—2023–08–06 |
57 | U12 | 雄性 Male | 5 650 | 2021–05–27—2023–08–06 |
58 | U15 | 雄性 Male | 5 500 | 2021–05–27—2023–08–06 |
59 | 2C4 | 雌性 Female | 4 340 | 2022–05–27—2022–12–26 |
60 | 1C8 | 雌性 Female | 3 930 | 2022–05–27—2022–08–31 |
61 | 1C2 | 雄性 Male | 4 915 | 2022/05/27—2023/08/01 |
62 | 2C2 | 雌性 Female | 4 480 | 2022–05–27—2023–08–05 |
63 | 1C3 | 雌性 Female | 4 500 | 2022–05–27—2023–08–05 |
64 | 1C6 | 雌性 Female | 4 065 | 2022–05–27—2023–08–06 |
65 | 1C7 | 雌性 Female | 3 835 | 2022–05–27—2023–08–06 |
66 | 2C3 | 雌性 Female | 4 050 | 2022–05–27—2023–08–06 |
67 | 2C5 | 雄性 Male | 5 030 | 2022–05–27—2023–08–06 |
68 | 2C6 | 雄性 Male | 4 885 | 2022–05–27—2023–08–06 |
69 | 1C9 | 雄性 Male | 4 760 | 2022–05–27—2023–08–06 |
70 | 2C1 | 雄性 Male | 5 030 | 2022–05–27—2023–08–06 |
71 | 3C4 | 雄性 Male | 5 340 | 2022–06–27—2022–12–06 |
72 | 1B2 | 雌性 Female | 4 135 | 2022–06–27—2023–01–31 |
73 | 3C2 | 雄性 Male | 5 260 | 2022–06–27—2023–07–31 |
74 | 3C6 | 雌性 Female | 3 910 | 2022–06–27—2023–08–05 |
75 | 3C5 | 雄性 Male | 5 380 | 2022–06–27—2023–08–05 |
76 | 3C7 | 雌性 Female | 4 970 | 2022–06–27—2023–08–06 |
77 | 3C8 | 雌性 Female | 4 380 | 2022–06–27—2023–08–06 |
78 | 3C3 | 雄性 Male | 5 190 | 2022–06–27—2023–08–06 |
79 | 1B1 | 雄性 Male | 4 455 | 2022–06–27—2023–08–06 |
80 | 1B3 | 雌性 Female | 3 845 | 2022–06–27—2023–08–06 |
Table 2
Contribution of each parameter to the percent contribution and permutation importance of Oriental Stork born in the Yellow River Delta"
变量 Variable | 单位 Unit | 贡献率Percent contribution(%) | 置换重要性 Permutation importance(%) | |||
夏季 summer | 冬季 winter | 夏季 summer | 冬季 winter | |||
elev | m | 52.4 | 43.9 | 63.7 | 78.6 | |
bio3 | — | 15.5 | 3.1 | 16.6 | 1.2 | |
water | m | 13.6 | 28.2 | 3.1 | 7.5 | |
bio15 | mm | 9.8 | 5.5 | 6.4 | 1.2 | |
land | — | 3.6 | 8.0 | 0.5 | 0.4 | |
bio2 | ℃ | 2.4 | 7.1 | 5.1 | 3.9 | |
bio5 | ℃ | 1.1 | 0.7 | 1.6 | 0.2 | |
resi | m | 0.9 | 0.1 | 1.4 | 0.3 | |
bio1 | ℃ | 0.6 | 3.4 | 1.5 | 6.7 | |
road | m | 0.2 | 0.0 | 0.2 | 0.1 |
Table 3
The area of different grades and its percentage in the total suitable area"
适宜区分类 Classification of suitable area | 夏季Summer | 冬季Winter | 夏季与冬季适宜区重叠区域 Overlap suitable areas between summer and winter | |||||
面积 Area/104 km2 | 百分比 Percentage (%) | 面积 Area/104 km2 | 百分比 Percentage (%) | 面积 Area/104 km2 | 百分比 Percentage (%) | |||
不适宜区 Not suitable | 834.60 | 0.00 | 847.85 | 0.00 | 896.14 | 0.00 | ||
低适宜区 Low suitable | 60.20 | 53.11 | 54.61 | 54.55 | 35.63 | 68.77 | ||
中适宜区 Middle suitable | 38.41 | 33.89 | 33.86 | 33.83 | 14.05 | 27.12 | ||
高适宜区 High suitable | 14.75 | 13.01 | 11.63 | 11.62 | 2.13 | 4.11 |
Table 4
Potential suitable areas of the Oriental Stork born in the Yellow River Delta in high suitable area"
区域 Region | 夏季 Summer | 冬季 Winter | 夏季与冬季适宜区重叠区域 Overlap suitable areas between summer and winter | |||||
面积 Area / 104 km2 | 百分比 Percentage (%) | 面积 Area / 104 km2 | 百分比 Percentage (%) | 面积 Area / 104 km2 | 百分比 Percentage (%) | |||
松嫩平原 Songnen Plain | 84 831.11 | 57.52 | — | — | — | — | ||
渤海湾Bohai Bay | 25 895.68 | 17.56 | 13 397.76 | 11.52 | 12 739.63 | 59.81 | ||
辽河平原Liaohe river Plain | 22 043.40 | 14.94 | — | — | — | — | ||
山东半岛东部沿海East coast of Shandong Peninsula | 5 286.14 | 3.58 | 7 782.71 | 6.69 | 4 949.55 | 23.24 | ||
三江平原(包括中俄黑龙江干流)Sanjiang Plain (including Heilongjiang Main Stream) | 4 574.76 | 3.10 | — | — | — | — | ||
江苏沿海East coastal area of Jiangsu | 2 156.07 | 1.46 | 8 333.67 | 7.17 | 1 990.16 | 9.34 | ||
长江中下游平原The Middle-Lower Yangtze Plains | 1 125.99 | 0.76 | 57 010.17 | 49.02 | 1 125.99 | 5.29 | ||
河南花园口以下黄河区Huanghe River area below Huayuankou, Henan Province | 1 039.87 | 0.70 | — | — | — | — | ||
江苏洪泽湖Hongze Lake, Jiangsu | 494.11 | 0.33 | 27 623.80 | 23.75 | 494.11 | 2.32 | ||
图们江Tumen River | 62.40 | 0.04 | — | — | — | — | ||
浙江沿海Zhejiang coastal area | — | — | 894.15 | 0.77 | — | — | ||
珠江三角洲及周边Zhujiang Delta and surroundings | — | — | 774.08 | 0.67 | — | — | ||
福建沿海Zhejiang coastal area | — | — | 482.14 | 0.41 | — | — |
Table 5
The suitable range of dominant environmental variables affecting the potential distribution of Oriental Stork born in the Yellow River Delta"
季节 Season | 变量 Variable | 单位 Unit | 适宜范围 Suitable range | 最适值 Optimum value |
夏季 Summer | bio1 | ℃ | 3.2~8.6, 13~16.3 | 14.9 |
bio2 | ℃ | 20.5~28.8 | 22.2 | |
bio3 | — | 40.2~48.1 | 42.6 | |
bio5 | ℃ | 32.8~37.7 | 36.8 | |
bio15 | mm | 102.1~117.1 | 113.7 | |
elev | m | <255 | ?7.1 | |
resi | m | 0~39 006 | 6 639 | |
road | m | 0~12 855 | 4 097 | |
water | m | 0~10 118 | 648 | |
冬季 Winter | bio1 | ℃ | 13.5~21.0 | 19.9 |
bio2 | ℃ | 19.2~23.3 | 20.0 | |
bio3 | — | 45.0~51.3 | 49.7 | |
bio5 | ℃ | 35.8~38.6 | 38.0 | |
bio15 | mm | 45.4~64.6, 107.2~116.0 | 55.2 | |
elev | m | <64.3 | ?162 | |
resi | m | 0~33 645 | 14 210 | |
road | m | 0~13 595 | 3 204 | |
water | m | 0~6 202 | 161 |
Table 6
Proportion of Oriental stork fitness class distribution in each land use type %"
季节 Season | 土地利用类 型 Landuse | 观测值 Observed value | 低适宜区 Low suitable area | 中适宜区 Mid- suitable area | 高适宜区 High suitable area |
夏季 Summer | 湿地Wetland | 35.30 | 38.94 | 47.46 | 39.01 |
农田Cropland | 33.74 | 19.74 | 27.37 | 32.72 | |
水域Water | 12.43 | 2.32 | 4.25 | 13.86 | |
草地Grassland | 11.25 | 6.24 | 6.89 | 8.06 | |
林地 Woodland | 3.46 | 19.04 | 5.52 | 0.91 | |
其他Others | 3.82 | 13.72 | 8.51 | 5.44 | |
冬季 Winter | 湿地Wetland | 40.56 | 15.56 | 31.69 | 37.26 |
农田Cropland | 29.68 | 38.04 | 32.06 | 30.22 | |
水域Water | 18.45 | 2.47 | 5.57 | 17.26 | |
草地Grassland | 2.51 | 3.94 | 2.25 | 2.18 | |
林地 Woodland | 4.11 | 26.32 | 10.62 | 2.4 | |
其他Others | 4.69 | 13.67 | 17.81 | 10.68 |
段玉宝, 田秀华, 马建章, 等. 黄河三角洲东方白鹳繁殖期觅食栖息地的利用. 生态学报, 2015, 35 (8): 2628- 2634. | |
Duan Y B, Tian X H, Ma J Z, et al. Foraging habitat use of the Oriental Stork during its breeding season. Acta Ecologica Sinica, 2015, 35 (8): 2628- 2634. | |
段玉宝, 田秀华, 朱书玉, 等. 黄河三角洲自然保护区东方白鹳的巢址利用. 生态学报, 2011, 31 (3): 666- 672. | |
Duan Y B, Tian X H, Zhu S Y, et al. Make use of nest-site of Oriental Stork in the Yellow River Estuary Nature Reserve. Acta Ecologica Sinica, 2011, 31 (3): 666- 672. | |
樊婷婷, 高尚坤, 孟凡玲, 等. 外来入侵新害虫刺槐突瓣细蛾在中国的适生区预测. 林业科学, 2019, 55 (6): 86- 95.
doi: 10.11707/j.1001-7488.20190611 |
|
Fan T T, Gao S K, Meng F L, et al. Prediction of suitable distribution regions of a new invasive pest: Chrysaster ostensackenella (Lepidoptera: Gracillariidae) in China. Scientia Silvae Sinicae, 2019, 55 (6): 86- 95.
doi: 10.11707/j.1001-7488.20190611 |
|
关鸿亮, 通口广芳. 卫星跟踪技术在鸟类迁徙研究中的应用及展望. 动物学研究, 2000, 21 (5): 412- 415.
doi: 10.3321/j.issn:0254-5853.2000.05.012 |
|
Guan H L, Higuchi H. Review on satellite tracking of migratory birds and its prospect. Zoological Research, 2000, 21 (5): 412- 415.
doi: 10.3321/j.issn:0254-5853.2000.05.012 |
|
何芬奇, 田秀华, 于海玲, 等. 略论东方白鹳的繁殖分布区域的扩展. 动物学杂志, 2008, 43 (6): 154- 157.
doi: 10.3969/j.issn.0250-3263.2008.06.023 |
|
He F Q, Tian X H, Yu H L, et al. The new breeding range and subpopulations of the Oriental Stork. Chinese Journal of Zoology, 2008, 43 (6): 154- 157.
doi: 10.3969/j.issn.0250-3263.2008.06.023 |
|
孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化. 应用生态学报, 2019, 30 (6): 2116- 2128. | |
Kong W Y, Li X H, Zou H F. Optimizing MaxEnt model in the prediction of species distribution. Chinese Journal of Applied Ecology, 2019, 30 (6): 2116- 2128. | |
李宏群, 韩培士, 牛常会, 等. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学, 2021, 57 (10): 102- 110.
doi: 10.11707/j.1001-7488.20211010 |
|
Li H Q, Han P S, Niu C H, et al. Impact of climate change on the potential habitat of brown-eared pheasant(Crossoptilon mantchuricum), an endemic and endangered animals to China. Scientia Silvae Sinicae, 2021, 57 (10): 102- 110.
doi: 10.11707/j.1001-7488.20211010 |
|
李 雨, 卢柳妍, 田秀华, 等. 东方白鹳在山东省适宜栖息地的分布预测. 生态学报, 2023, 43 (6): 2194- 2201. | |
Li Y, Lu L Y, Tian X H, et al. Prediction of the suitable habitat distribution of Oriental Stork in Shandong Province. Acta Ecologica Sinica, 2023, 43 (6): 2194- 2201. | |
刘 强, 林 楠, 王长琪, 等. 松嫩平原湿地演变及其驱动因素分析. 地质与资源, 2023, 32 (1): 96- 103. | |
Liu Q, Lin N, Wang C Q, et al. Wetland evolution and its driving factors in Songnen Plain. Geology and Resources, 2023, 32 (1): 96- 103. | |
宓春荣, 郭玉民, Huettmann Falk, 等. 基于物种分布模型的精确采样提高目标物种发现率—以黑颈鹤(Grus nigricollis), 白头鹤(Grus monacha)为例. 生态学报, 2017, 37 (13): 4476- 4482. | |
Mi C R, Guo Y M, Huettmann F, et al. Species distribution model sampling contributes to the identification of target species: take Black-necked Crane and Hooded Crane as two cases the model-based sampling approach could help to reduce areas to be investigated and it can find target species more effectively re. cost and effort. Acta Ecologica Sinica, 2017, 37 (13): 4476- 4482. | |
王东升, 赵 伟, 程蓓蓓, 等. 基于MaxEnt模型的中国山楂潜在适生区. 林业科学, 2022, 58 (7): 43- 50.
doi: 10.11707/j.1001-7488.20220705 |
|
Wang D S, Zhao W, Cheng B B, et al. Potential suitable areas of Crataegus pinnatifida in China based on MaxEnt modeling. Scientia Silvae Sinicae, 2022, 58 (7): 43- 50.
doi: 10.11707/j.1001-7488.20220705 |
|
王奎博, 唐永强, 安 硕, 等. 基于GEE的三江平原湿地覆盖变化及驱动力分析. 现代信息科技, 2021, 5 (23): 51- 54. | |
Wang K B, Tang Y Q, An S, et al. Analysis of wetland cover change and driving force in Sanjiang Plain based on GEE. Modern Information Technology, 2021, 5 (23): 51- 54. | |
王岐山, 杨兆芬. 东方白鹳研究现状. 安徽大学学报(自然科学版), 1995, 19 (1): 82- 99. | |
Wang Q S, Yang Z F. Research status of oriental crane. Journal of Anhui University (Natural Science Edition), 1995, 19 (1): 82- 99. | |
王新建, 刘 新, 戴昭鑫. 黄河三角洲东方白鹳的巢址选择预测分析. 四川动物, 2022, 41 (3): 264- 271. | |
Wang X J, Liu X, Dai Z X. Predictive analysis of nest site selection of oriental stork in the Yellow River Delta. Sichuan Journal of Zoology, 2022, 41 (3): 264- 271. | |
徐新良, 刘纪远, 张树文, 等. 2018. 中国多时期土地利用遥感监测数据集(CNLUCC). 资源环境科学数据注册与出版系统.http://www.resdc.cn/DOI. | |
Xu X L, Liu J Y, Zhang S W, et al. 2018. China Multi period Land Use Remote Sensing Monitoring Dataset (CNLUCC).Resource and Environmental Science Data Registration and Publishing System.http://www.resdc.cn/DOI.[in Chinese] | |
许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法. 生态学报, 2015, 35 (2): 557- 567. | |
Xu Z L, Peng H H, Peng S Z. The development and evaluation of species distribution models. Acta Ecologica Sinica, 2015, 35 (2): 557- 567. | |
薛委委, 周立志, 朱书玉, 等. 迁徙停歇地东方白鹳繁殖生态研究. 应用与环境生物学报, 2010, 16 (6): 828- 832. | |
Xue W W, Zhou L Z, Zhu S Y, et al. Breeding ecology of Oriental Stork (Ciconia boyciana) in the migratory stopover site. Chinese Journal of Applied & Environmental Biology, 2010, 16 (6): 828- 832. | |
张 阳, 李金亚, 钱法文, 等. 黄河三角洲东方白鹳春季迁徙期生境适宜性历史演变. 东北林业大学学报, 2022, 50 (1): 93- 99.
doi: 10.3969/j.issn.1000-5382.2022.01.016 |
|
Zhang Y, Li J Y, Qian F W, et al. Historical evolution of habitat suitabilityof Oriental Stork stop over at the Yellow River Delta during spring migration. Journal of Northeast Forestry University, 2022, 50 (1): 93- 99.
doi: 10.3969/j.issn.1000-5382.2022.01.016 |
|
张宇凡, 党英侨, 王小艺. 基于气候和寄主因素的栗山天牛中国成灾和扩散风险评估. 林业科学, 2022, 58 (6): 95- 109. | |
Zhang Y F, Dang Y Q, Wang X Y. Risk analysis of dispersal and outbreak of Massicus raddei (Coleoptera: Cerambycidae) in China based on climate and host distribution. Scientia Silvae Sinicae, 2022, 58 (6): 95- 109. | |
Anderson R P, Raza A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 2010, 37 (7): 1378- 1393.
doi: 10.1111/j.1365-2699.2010.02290.x |
|
Cheng L, Zhou L Z, Wu L X, et al. Nest site selection and its implications for conservation of the endangered Oriental Stork Ciconia boyciana in Yellow River Delta, China. Bird Conservation International, 2020, 30 (2): 323- 334.
doi: 10.1017/S0959270919000303 |
|
Fan S, Zhao Q, Li H, et al. Cyclical helping hands: seasonal tailwinds differentially affect migrating Oriental Storks (Ciconia boyciana) travel speed. Avian Research, 2020, 11, 10.
doi: 10.1186/s40657-020-00196-8 |
|
Fernandes R F, Honrado J P, Guisan A, et al. Species distribution models support the need of international cooperation towards successful management of plant invasions. Journal for Nature Conservation, 2019, 49, 85- 94.
doi: 10.1016/j.jnc.2019.04.001 |
|
Franklin J. Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 2010, 16 (3): 321- 330.
doi: 10.1111/j.1472-4642.2010.00641.x |
|
Guisan A, Broennimann O, Engler R, et al. Using niche-based models to improve the sampling of rare species. Conservation Biology, 2006, 20 (2): 501- 511.
doi: 10.1111/j.1523-1739.2006.00354.x |
|
He Q, Wang M, Liu K, et al. GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning. Earth System Science Data, 2022, 14 (7): 3273- 3292. | |
Ma Z J, Li B, Zhao B, et al. Are artificial wetlands good alternatives to natural wetlands for waterbirds? a case study on Chongming Island, China. Biodiversity and Conservation, 2004, 13, 333- 350.
doi: 10.1023/B:BIOC.0000006502.96131.59 |
|
Ma Z J, Cai Y T, Li B, et al. Managing wetland habitats for waterbirds: an international perspective. Wetlands, 2010, 30 (1): 15- 27.
doi: 10.1007/s13157-009-0001-6 |
|
Peng H B, Ma Z, Rakhimberdiev E, et al. Arriving late and lean at a stopover site is selected against in a declining migratory bird population. Journal of Animal Ecology, 2023, 92 (10): 2109- 2118.
doi: 10.1111/1365-2656.14001 |
|
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190, 231- 259.
doi: 10.1016/j.ecolmodel.2005.03.026 |
|
Pigniczki C, Végvári Z. Dispersal of the central European population of the Eurasian spoonbill Platalea leucorodia. Ardeola, 2015, 62 (2): 219- 236.
doi: 10.13157/arla.62.2.2015.219 |
|
Visser M E, Perdeck A C, van Balen J H, et al. Climate change leads to decreasing bird migration distances. Global Change Biology, 2009, 15 (8): 1859- 1865.
doi: 10.1111/j.1365-2486.2009.01865.x |
|
Yang Z Y, Chen L X, Jia R, et al. Migration routes of the endangered oriental stork (Ciconia boyciana) from Xingkai Lake, China, and their repeatability as revealed by GPS tracking. Avian Research, 2023, 14, 100090. | |
Zheng H F, Shen G Q, Shang L Y, et al. Efficacy of conservation strategies for endangered oriental storks (Ciconia boyciana) under climate change in Northeast China. Biological Conservation, 2016, 204, 367- 377.
doi: 10.1016/j.biocon.2016.11.004 |
[1] | Fucheng Yang,Xiaoyong Lei,Jianhui Zeng,Mingqin Shao,Yijin Zhi. Foraging Behavior and Population Dynamics of Ciconia boyciana in Two Areas of Poyang Lake during the Wintering Period [J]. Scientia Silvae Sinicae, 2023, 59(5): 128-135. |
[2] | Yitong Liu,Hui Guo,Shunxiang Pei,Sha Wu,Di Wu,Xuebing Xin. Regionalization and Rationality Analysis of Natural Acer truncatum in China Based on MaxEnt Model [J]. Scientia Silvae Sinicae, 2023, 59(12): 13-24. |
[3] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[4] | Rui Bai,Ning Li,Shaojun Liu,Xiaomin Chen,Haiping Zou,Run Lü. Risk Analysis of White Root Disease on Rubber Trees in China under the Background of Future Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 37-45. |
[5] | Guanghua Zhao,Xinyue Cui,Zhi Wang,Hongli Jing,Baoguo Fan. Prediction of Potential Distribution of Ziziphus jujuba var. spinosa in China under Context of Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 158-168. |
[6] | Jiming Liu,Liming Jia,Lianchun Wang,Caowen Sun,Xin Wang,Yulin Zheng,Zhong Chen,Xuehuang Weng. Potential Distribution and Ecological Characteristics of Genus Sapindus in China Based on MaxEnt Model [J]. Scientia Silvae Sinicae, 2021, 57(5): 1-12. |
[7] | Hongqun Li,Peishi Han,Changhui Niu,Xiaoqing Yuan,Ligang Xing. Impact of Climate Change on the Potential Habitat of Brown-Eared Pheasant (Crossoptilon mantchuricum), An Endemic and Endangered Animals to China [J]. Scientia Silvae Sinicae, 2021, 57(10): 102-110. |
[8] | Wang Wei, Yang Junjie, Luo Xiaoying, Zhou Changjiang, Chen Shifa, Yang Zhijun, Hou Rongfeng, Chen Zaixiong, Li Yongsheng. Assessment of Potential Habitat for Firmiana danxiaensis, a Plant Species with Extremely Small Populations in Danxiashan National Nature Reserve Based on Maxent Model [J]. Scientia Silvae Sinicae, 2019, 55(8): 19-27. |
[9] | Wang Xiaowei, Ren Xueyan, Liang Yingmei. MaxEnt-Based Prediction of Potential Geographic Distribution and Habitat Suitability Analysis for Dothistroma pini in China [J]. Scientia Silvae Sinicae, 2019, 55(4): 160-170. |
[10] | Linnan Ouyang,Shaoxiong Chen,Xuefeng Liu,Sha He,Weiyao Zhang. Suitable Geographic Range for Eucalyptus camaldulensis in China and Its Response to Climate Change [J]. Scientia Silvae Sinicae, 2019, 55(12): 1-11. |
[11] | Jingwen Li,Hao Guo,Yusheng Wang,Zhiming Xin,Yongjun Lü. Identification of Potential Distribution Area for Populus euphratica by the MaxEnt Ecologic Niche Model [J]. Scientia Silvae Sinicae, 2019, 55(12): 133-139. |
[12] | Ding Xinjing, Jing Ruyan, Huang Yali, Chen Bojie, Ma Fengyun. Bacterial Structure and Diversity of Rhizosphere Soil of Four Tree Species in Yellow River Delta Based on High-Throughput Sequencing [J]. Scientia Silvae Sinicae, 2018, 54(1): 81-89. |
[13] | Xi Jinbiao;Xing Shangjun;Song Yumin;Zhang Jianfeng;Zhang Jianguo;Dong Zhencheng. Characteristics of Soil Salt and Nutrient of Different Afforestation Systems in Yellow River Delta Area [J]. , 2007, 43(zk): 33-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||