Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (3): 1-15.doi: 10.11707/j.1001-7488.LYKX20240800
• Invited reviews • Previous Articles Next Articles
Xiaoning Ge1,2(),Xinqiao Xu3,*(
),Huaiqing Zhang1,2,*(
),Jing Zhang1,2,Jie Yang1,2,4,Zeyu Cui1,2,Rurao Fu1,2,5,Jinjie Liang3,Tianhua Zou3,Linlong Wang1,2,6,Yang Liu1,2
Received:
2024-12-25
Online:
2025-03-25
Published:
2025-03-27
Contact:
Xinqiao Xu,Huaiqing Zhang
E-mail:gexiaoningcaf@163.com;1183006524@qq.com;zhang@ifrit.ac.cn
CLC Number:
Xiaoning Ge,Xinqiao Xu,Huaiqing Zhang,Jing Zhang,Jie Yang,Zeyu Cui,Rurao Fu,Jinjie Liang,Tianhua Zou,Linlong Wang,Yang Liu. Progress and Reflection on Genotype-Environment Interaction Algorithms in Forest Tree Breeding[J]. Scientia Silvae Sinicae, 2025, 61(3): 1-15.
Table 1
Algorithm and characteristics of genotype-environment interaction"
方法 Method | 算法设计 Algorithm design | 应用 Application | 优点 Advantages | 缺点 Disadvantages |
统计学习 Statistical learning | 线性混合模型、 广义加性模型、 贝叶斯网络 Linear Mixed Model (LMM), Generalized Additive Model (GAM), Bayesian Network | 基因型与环境互作的固定效应和随机效应分析、 非线性关系拟合、 因果推断 Analysis of fixed and random effects of genotype - environment interaction, fitting of non - linear relationships, causal inference | 模型解释性强,适用于不确定性较高的数据分析,能够量化环境因子的贡献度 The model has strong interpretability, is suitable for data analysis with high uncertainty, and can quantify the contribution of environmental factors | 计算复杂度较高,处理高维数据时可能面临维度灾难,难以捕捉复杂的非线性关系 High computational complexity. When dealing with high - dimensional data, it may face the curse of dimensionality and has difficulty capturing complex non - linear relationships |
机器学习 Machine learning | 随机森林、 支持向量机、 LASSO回归、 XGBoost Random Forest (RF), Support Vector Machine (SVM), LASSO Regression, XGBoost | 林木性状预测、 抗性评价、 产量估计、 基因组选择、 环境适应性预测 Plant trait prediction, resistance evaluation, yield estimation, genomic selection, environmental adaptability prediction | 处理高维数据能力强,特征选择效果好,模型解释性较好,适用于小样本数据 Strong ability to handle high - dimensional data, good feature selection effect, relatively good model interpretability, and suitable for small - sample data | 对非线性关系的处理能力有限,计算复杂度较高,可能忽略复杂的互作关系 Limited ability to handle non - linear relationships, high computational complexity, and may ignore complex interaction relationships |
深度学习 Deep learning | 卷积神经网络、 循环神经网络、 长短时记忆网络、 Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short - Term Memory Network (LSTM) | 林木表型分析、 图像识别、 时序数据分析、 复杂表型预测 Plant phenotyping analysis, image recognition, time - series data analysis, complex phenotype prediction | 自动提取复杂特征,处理非线性关系能力强,适用于大规模数据 Automatically extracts complex features, has a strong ability to handle non - linear relationships, and is suitable for large - scale data | 需要大量训练数据,计算资源消耗大,模型解释性较差(“黑箱”问题) Requires a large amount of training data, consumes a lot of computing resources, and has poor model interpretability (the "black - box" problem) |
集成学习 Ensemble learning | Stacking, Blending, XGBoost | 多模态数据整合、 复杂特征关系捕捉、 林木表型分析、 产量预测 Multi - modal data integration, capturing complex feature, relationships, plant phenotyping analysis, yield prediction | 结合多种模型的优势,提升预测的稳健性和准确性,适用于多模态数据融合 Combines the advantages of multiple models, improves the robustness and accuracy of prediction, and is suitable for multi - modal data fusion | 模型复杂度高,计算资源消耗大,模型解释性较差 High model complexity, large consumption of computing resources, and poor model interpretability |
迁移学习 Transfer learning | 预训练模型、 轻量化模型(如MobileNet、EfficientNet) Pre - trained models, light weight models (such as MobileNet, EfficientNet) | 小样本数据场景、 林木表型分析、 跨环境适应性评价 Small - sample data scenarion, plant phenotyping analysis, cross - environmental adaptability evaluation | 减少训练数据需求,提升模型在新环境中的预测准确度,适用于小样本问题 Reduces the demand for training data, improves the prediction accuracy of the model in new environments, and is suitable for small - sample problems | 预训练模型的适用性有限,可能无法完全适应新环境的数据分布 The applicability of pre - trained models is limited, and they may not fully adapt to the data distribution of new environments |
知识图谱 Knowledge graph | 作物表型知识图谱 Crop phenotype knowledge graph | 表型性状的智能解析、 基因调控网络与表型数据整合、 复杂互作关系模拟 Intelligent analysis of phenotypic traits, integration of gene regulatory networks and phenotypic data, simulation of complex interaction relationships | 促进表型性状的智能解析,整合多源数据,揭示基因与环境因子的耦合效应 Promotes the intelligent analysis of phenotypic traits, integrates multi - source data, and reveals the coupling effect of genes and environmental factors | 构建和维护知识图谱的成本高,模型复杂度高,计算资源消耗大 High cost of constructing and maintaining the knowledge graph, high model complexity, and large consumption of computing resources |
Table 2
Representative methods of AI-assisted forest tree breeding"
分类 Classification | 模型/算法 Model/Algorithm | 应用 Application | 文献 References |
高通量表型学 High-throughput phenotyping | ResNet-50 CNN Transformer | 减少人工标注工作量 Reduce manual labeling workload 提高测量准确性与精度 Improve measurement accuracy and precision | |
基因功能与基因组预测 Gene function and genome prediction | GS DeepGOplus CNN DNNGP | 识别候选基因 Identify candidate genes 结合多组学数据实现更多的性能 Integrating multi-omics data to achieve enhanced performance | |
多组学数据整合 Multi-omic data integration | GWAS CNN GCNN | 结合多组学数据与深度学习制定路线图 Develop a roadmap by integrating multi-omics data with deep learning | |
G×E互作 G×E Interaction | GS RRM BLUP GBLUP-AD | 对环境梯度的函数建模以预测性能 Modeling functions of environmental gradients to predict trait performance 得到更准确的遗传方差估计 Obtain more accurate estimates of genetic variance |
崔泽宇, 张怀清, 左袁青, 等. 杉木三维模型各方向枝下高分布研究. 南京林业大学学报(自然科学版), 2022, 46 (1): 81- 87. | |
Cui Z Y, Zhang H Q, Zuo Y Q, et al. The distribution of under branch heights in various directions of the three-dimensional Chinese fir model. Journal of Nanjing Forestry University ( Natural Sciences Edition), 2022, 46 (1): 81- 87. | |
狄 艳. 2023. 基于冬小麦生长时序特征融合多源数据与深度学习的产量预测研究. 北京: 中国农业科学院. | |
Di Y. 2023. Winter wheat yield prediction based on crop growth time series characteristics combined with multi-source data and deep learning. Beijing: Chinese Academy of Agriculture Science. [in Chinese] | |
贾 琪, 吴名耀, 梁康迳, 等. 基因组学在作物抗逆性研究中的新进展. 中国生态农业学报, 2014, 22 (4): 375- 385. | |
Jia Q, Wu M Y, Liang K J, et al. Advances in applications of genomics in stress resistance studies of crops. Chinese Journal of Eco-Agriculture, 2014, 22 (4): 375- 385. | |
阙青敏, 欧阳昆唏, 李 培, 等. 全基因组关联分析(GWAS)在林木育种中的应用. 植物生理学报, 2019, 55 (11): 1555- 1562. | |
Que Q M, Ouyang K X, Li P, et al. Application of genome-wide association analysis (GWAS) in forest tree breeding. Plant Physiology Journal, 2019, 55 (11): 1555- 1562. | |
李阿蕾, 戴志刚, 陈基权, 等. 机器学习在植物表型中的应用进展. 中国麻业科学, 2023, 45 (5): 248- 253,260. | |
Li A L, Dai Z G, Chen J Q, et al. Progresses of machine learning application in plant phenotype researh. Plant Fiber Sciences in China, 2023, 45 (5): 248- 253,260. | |
李 刚, 刘 瑜, 张庆君. 多源卫星数据在轨智能融合技术. 中国科学基金, 2021, 35 (5): 708- 712. | |
Li G, Liu Y, Zhang Q J. On the development of on-board fusion of multi-source satellite data. Bulletin of Natural Science Foundation of China, 2021, 35 (5): 708- 712. | |
李金花. 基于BLUP和GGE双标图的黑杨派无性系生长性状基因型与环境互作效应. 林业科学, 2021, 57 (6): 64- 73. | |
Li J H. Genotype by environment interaction for growth traits of clones of Populus section aigeiros based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2021, 57 (6): 64- 73. | |
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
刘国满, 盛 敬, 罗玉峰. 基于stacking融合机制的自动驾驶伦理决策模型. 计算机应用研究, 2025, 42 (2): 462- 468. | |
Liu G M, Sheng J, Luo Y F. Self-driving ethical decision-making model based on stacking fusion mechanism. Application Research of Computers, 2025, 42 (2): 462- 468. | |
石铁流. 新技术能使DNA测序的成本降低多少. 科学通报, 2017, 62 (19): 2042- 2046. | |
Shi T L. How much will new technologies lower the cost of DNA sequencing. Chinese Science Bulletin, 2017, 62 (19): 2042- 2046. | |
孙晓慧. 一种改进的小波阈值函数降噪方法. 中国科技信息, 2024, (13): 92- 96. | |
Sun X H. An improved denoising method based on wavelet threshold function. China Science and Technology Information, 2024, (13): 92- 96. | |
谭晶维, 张怀清, 刘 洋, 等. 问答式林业预训练语言模型ForestBERT. 林业科学, 2024, 60 (9): 99- 110. | |
Tan J W, Zhang H Q, Liu Y, et al. Question-answering forestry pre-trained language model: ForestBERT. Scientia Silvae Sinicae, 2024, 60 (9): 99- 110. | |
王楚彪, 熊 涛, 张 磊, 等. 桉树无性系生长性状基因型与环境互作效应及优良无性系选择. 浙江农林大学学报, 2023, 40 (5): 951- 960. | |
Wang C B, Xiong T, Zhang L, et al. Genotype × environment interaction on growth traits of Eucalyptus clones and selection of elite clones. Journal of Zhejiang A&F University, 2023, 40 (5): 951- 960. | |
王艳群. 深度学习模型在遥感图像分割中的应用与挑战. 无线互联科技, 2024, 21 (14): 82- 84,95. | |
Wang Y Q. Application and challenge of deep learning model in remote sensing image segmentation. Wireless Internet Technology, 2024, 21 (14): 82- 84,95. | |
许兵博, 张怀清, 薛联凤, 等. 基于CrossViT模型的树叶识别方法. 林业工程学报, 2024, 9 (6): 161- 172. | |
Xu B B, Zhang H Q, Xue L F, et al. Method of tree leaf recognition based on CrossViT. Journal of Forestry Engineering, 2024, 9 (6): 161- 172. | |
张良培, 何 江, 杨倩倩, 等. 2022. 数据驱动的多源遥感信息融合研究进展. 测绘学报, 51(7): 1317−1337. | |
Zhang L P, He J, Yang Q Q, et al. 2022. Data-driven multi-source remote sensing data fusion: progress and challenges. Acta Geodaetica et Cartographica Sinica, 51(7): 1317−1337. [in Chinese] | |
郑蓓君. 2021. 基于贝叶斯全卷积神经网络的胡杨林遥感提取. 福州: 福州大学. | |
Zheng B J. 2021. Remote sensing extraction of Populus euphratica forest based on bayesian fully convolutional neural network. Fuzhou: Fuzhou University. [in Chinese] | |
周 磊, 张慧春, 边黎明. 零样本深度学习驱动的杨树叶片表型检测方法研究. 林业工程学报, 2024, 9 (6): 152- 160. | |
Zhou L, Zhang H C, Bian L M. Poplar leaf phenotyping methods using zero-shot deep learning. Journal of Forestry Engineering, 2024, 9 (6): 152- 160. | |
朱教君, 王高峰, 张怀清, 等. 关于“气候智慧林业”研究的思考. 林业科学, 2024, 60 (7): 1- 7. | |
Zhu J J, Wang G G, Zhang H Q, et al. On the research of climate-smart forestry. Scientia Silvae Sinicae, 2024, 60 (7): 1- 7. | |
Aviles Toledo C, Crawford M M, Tuinstra M R. Integrating multi-modal remote sensing, deep learning, and attention mechanisms for yield prediction in plant breeding experiments. Frontiers in Plant Science, 2024, 15, 1408047.
doi: 10.3389/fpls.2024.1408047 |
|
Barton N H. 2009. Why sex and recombination?Cold Spring Harbor Symposia on Quantitative Biology, 74: 187−195. | |
Binda G, Di Iorio A, Monticelli D. The what, how, why, and when of dendrochemistry: (paleo)environmental information from the chemical analysis of tree rings. Science of The Total Environment, 2021, 758, 143672.
doi: 10.1016/j.scitotenv.2020.143672 |
|
Brown J L, Hill D J, Dolan A M, et al. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 2018, 5, 180254.
doi: 10.1038/sdata.2018.254 |
|
Bryant N, Zhang J, Feng K, et al. Novel candidate genes for lignin structure identified through genome-wide association study of naturally varying Populus trichocarpa. Frontiers in Plant Science, 2023, 14, 1153113.
doi: 10.3389/fpls.2023.1153113 |
|
Bok K, Kim D, Yoo J. Complex event processing for sensor stream data. Sensors, 2018, 18 (9): 3084.
doi: 10.3390/s18093084 |
|
Canella Vieira C, Zhou J, Jarquin D, et al. Genetic architecture of soybean tolerance to off-target dicamba. Frontiers in Plant Science, 2023, 14, 1230068.
doi: 10.3389/fpls.2023.1230068 |
|
Carré C, Carluer J B, Chaux C, et al. Next-Gen GWAS: full 2D epistatic interaction maps retrieve part of missing heritability and improve phenotypic prediction. Genome Biology, 2024, 25 (1): 76.
doi: 10.1186/s13059-024-03202-0 |
|
Carthew R W. Gene regulation and cellular metabolism: an essential partnership. Trends in Genetics, 2021, 37 (4): 389- 400.
doi: 10.1016/j.tig.2020.09.018 |
|
Chen Z Q, Baison J, Pan J, et al. Increased prediction ability in Norway spruce trials using a marker X environment interaction and non-additive genomic selection model. Journal of Heredity, 2019, 110 (7): 830- 843.
doi: 10.1093/jhered/esz061 |
|
El-Dien O G, Ratcliffe B, Klápště J, et al. Multienvironment genomic variance decomposition analysis of open-pollinated Interior spruce (Picea glauca × engelmannii). Molecular Breeding, 2018, 38 (3): 26.
doi: 10.1007/s11032-018-0784-3 |
|
Evans L M, Slavov G T, Rodgers-Melnick E, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nature Genetics, 2014, 46 (10): 1089- 1096.
doi: 10.1038/ng.3075 |
|
Fan Y F, Sun C, Yan K, et al. Recent advances in studies of genomic DNA methylation and its involvement in regulating drought stress response in crops. Plants, 2024, 13 (10): 1400.
doi: 10.3390/plants13101400 |
|
Farooq M A, Gao S, Hassan M A, et al. Artificial intelligence in plant breeding. Trends in Genetics, 2024, 40 (10): 891- 908.
doi: 10.1016/j.tig.2024.07.001 |
|
Fisher R A. Statistical methods for research workers. Journal of the American Statistical Association, 1972, 67 (337): 248. | |
Gao S, Young M T, Qiu J X, et al. Hierarchical attention networks for information extraction from cancer pathology reports. Journal of the American Medical Informatics Association, 2018, 25 (3): 321- 330.
doi: 10.1093/jamia/ocx131 |
|
Ge Z Y, Fang Y J, Chang J Y, et al. Using deep learning to assess the function of gastroesophageal flap valve according to the Hill classification system. Annals of Medicine, 2023, 55 (2): 2279239.
doi: 10.1080/07853890.2023.2279239 |
|
Ghosal S, Zheng B Y, Chapman S C, et al. A weakly supervised deep learning framework for Sorghum head detection and counting. Plant Phenomics, 2019, 1525874.
doi: 10.34133/2019/1525874 |
|
Guo Q C, He Z F, Wang Z S. Monthly climate prediction using deep convolutional neural network and long short-term memory. Scientific Reports, 2024, 14 (1): 17748.
doi: 10.1038/s41598-024-68906-6 |
|
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368 (6488): 266- 269.
doi: 10.1126/science.aaz7614 |
|
Harfouche A L, Jacobson D A, Kainer D, et al. Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends in Biotechnology, 2019, 37 (11): 1217- 1235.
doi: 10.1016/j.tibtech.2019.05.007 |
|
Harris I, Osborn T J, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 2020, 7 (1): 109.
doi: 10.1038/s41597-020-0453-3 |
|
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. IEEE, 770−778. | |
Hengl T, Mendes de Jesus J, Heuvelink G B M, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 2017, 12 (2): e0169748.
doi: 10.1371/journal.pone.0169748 |
|
Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nature Reviews Genetics, 2015, 16 (2): 71- 84.
doi: 10.1038/nrg3863 |
|
Hudson A R, Peters D P C, Blair J M, et al. Cross-site comparisons of dryland ecosystem response to climate change in the US long-term ecological research network. Bioscience, 2022, 72 (9): 889- 907.
doi: 10.1093/biosci/biab134 |
|
Ijaz S, Haq I U, Habib Z, et al. Genome-wide identification, and gene expression analysis of NBS-LRR domain containing R genes in Chenopodium quinoa for unveiling the dynamic contribution in plant immunity against Cercospora cf. chenopodii. Physiology and Molecular Biology of Plants, 2024, 30 (7): 1129- 1144.
doi: 10.1007/s12298-024-01475-0 |
|
Juliana P, Poland J, Huerta-Espino J, et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics, 2019, 51 (10): 1530- 1539.
doi: 10.1038/s41588-019-0496-6 |
|
Kang M, Ko E, Mersha T B. A roadmap for multi-omics data integration using deep learning. Briefings in Bioinformatics, 2022, 23 (1): bbab454.
doi: 10.1093/bib/bbab454 |
|
Kanwal S, Abdullah M, Kumar S, et al. An optimal internet of things-driven intelligent decision-making system for real-time fishpond water quality monitoring and species survival. Sensors, 2024, 24 (23): 7842. | |
Khoa T A, Man M M, Nguyen T Y, et al. Smart agriculture using IoT multi-sensors: a novel watering management system. Journal of Sensor and Actuator Networks, 2019, 8 (3): 45.
doi: 10.3390/jsan8030045 |
|
Klupczyńska E A, Ratajczak E. Can forest trees cope with climate change?-effects of DNA methylation on gene expression and adaptation to environmental change. International Journal of Molecular Sciences, 2021, 22 (24): 13524.
doi: 10.3390/ijms222413524 |
|
Komyshev E G, Genaev M A, Busov I D, et al. Determination of the melanin and anthocyanin content in barley grains by digital image analysis using machine learning methods. Vavilovskii Zhurnal Genetiki I Selektsii, 2023, 27 (7): 859- 868. | |
Lebedeva M A, Tvorogova V E, Tikhodeyev O N. Epigenetic mechanisms and their role in plant development. Russian Journal of Genetics, 2017, 53 (10): 1057- 1071.
doi: 10.1134/S1022795417090083 |
|
Lee C P, Lim K M, Song Y X, et al. Plant-CNN-ViT: plant classification with ensemble of convolutional neural networks and vision transformer. Plants, 2023, 12 (14): 2642.
doi: 10.3390/plants12142642 |
|
Li S L, Khoso M A, Wu J B, et al. Exploring the mechanisms of WRKY transcription factors and regulated pathways in response to abiotic stress. Plant Stress, 2024a, 12, 100429.
doi: 10.1016/j.stress.2024.100429 |
|
Li S, Liu Y, Shen L C, et al. GMFGRN a matrix factorization and graph neural network approach for gene regulatory network inference. Briefings in Bioinformatics, 2024b, 25 (2): bbad529.
doi: 10.1093/bib/bbad529 |
|
Li Y S, McGrail D J, Latysheva N, et al. Pathway perturbations in signaling networks: linking genotype to phenotype. Seminars in Cell & Developmental Biology, 2020, 99, 3- 11. | |
Li Y J, Suontama M, Burdon R D, et al. Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetics & Genomes, 2017, 13 (3): 60. | |
Li Y R, Yang K M, Wu B. Feature selection and spectral indices for identifying maize stress types. Applied Spectroscopy, 2025, 79 (2): 306- 319. | |
Liu X X, Bai X S, Wang L H, et al. Review and trend analysis of knowledge graphs for crop pest and diseases. IEEE Access, 2019, 7, 62251- 62264.
doi: 10.1109/ACCESS.2019.2915987 |
|
Liu Y M, Xiao F J, Zheng X Y, et al. Integrating deformable CNN and attention mechanism into multi-scale graph neural network for few-shot image classification. Scientific Reports, 2025, 15, 1306.
doi: 10.1038/s41598-025-85467-4 |
|
Lundberg S M, Erion G, Chen H, et al. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2020, 2 (1): 56- 67.
doi: 10.1038/s42256-019-0138-9 |
|
Luomaranta M, Grones C, Choudhary S, et al. Systems genetic analysis of lignin biosynthesis in Populus tremula. New Phytologist, 2024, 243 (6): 2157- 2174.
doi: 10.1111/nph.19993 |
|
Mahmood T, Khalid S, Abdullah M, et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 2019, 9 (1): 105.
doi: 10.3390/cells9010105 |
|
Mansoor S, Karunathilake E M B M, Tuan T T, et al. 2024. Genomics, phenomics, and machine learning in transforming plant research: Advancements and challenges. Horticultural Plant Journal. | |
Marsh J I, Hu H F, Gill M, et al. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics. Theoretical and Applied Genetics, 2021, 134 (6): 1677- 1690.
doi: 10.1007/s00122-021-03820-3 |
|
McCouch S, Navabi Z K, Abberton M, et al. Mobilizing crop biodiversity. Molecular Plant, 2020, 13 (10): 1341- 1344.
doi: 10.1016/j.molp.2020.08.011 |
|
Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
|
Milner S G, Jost M, Taketa S, et al. Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 2019, 51 (2): 319- 326.
doi: 10.1038/s41588-018-0266-x |
|
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology, 2011, 14 (3): 267- 274.
doi: 10.1016/j.pbi.2011.03.004 |
|
Mochida K, Koda S, Inoue K, et al. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective. GigaScience, 2019, 8 (1): giy153. | |
Mukarram M, Choudhary S, Kurjak D, et al. Drought: sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum, 2021, 172 (2): 1291- 1300.
doi: 10.1111/ppl.13423 |
|
Naseem A, Khan Y D. An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches. Methods, 2024, 228, 65- 79.
doi: 10.1016/j.ymeth.2024.05.008 |
|
Neale D B, Kremer A. Forest tree genomics: growing resources and applications. Nature Reviews Genetics, 2011, 12 (2): 111- 122.
doi: 10.1038/nrg2931 |
|
Palani H K, Ilangovan S, Senthilvel P G, et al. 2023. AI-powered predictive analysis for pest and disease forecasting in crops. 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI). November 23−25, 2023, Greater Noida, India. IEEE, 950−954. | |
Park J S, Lee H, Choi D, et al. Spatially varying relationships between alien plant distributions and environmental factors in South Korea. Plants, 2021, 10 (7): 1377.
doi: 10.3390/plants10071377 |
|
Peladarinos N, Piromalis D, Cheimaras V, et al. Enhancing smart agriculture by implementing digital twins: a comprehensive review. Sensors, 2023, 23 (16): 7128.
doi: 10.3390/s23167128 |
|
Peleke F F, Zumkeller S M, Gültas M, et al. Deep learning the Cis-regulatory code for gene expression in selected model plants. Nature Communications, 2024, 15 (1): 3488.
doi: 10.1038/s41467-024-47744-0 |
|
Papin V, Bosc A, Sanchez L, et al. Integrating environmental gradients into breeding: application of genomic reactions norms in a perennial species. Heredity, 2024, 133 (3): 160- 172.
doi: 10.1038/s41437-024-00702-4 |
|
Pérez-Ramos I M, Matías L, Gómez-Aparicio L, et al. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications, 2019, 10 (1): 2555.
doi: 10.1038/s41467-019-10453-0 |
|
Roberts D R, Bahn V, Ciuti S, et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40 (8): 913- 929.
doi: 10.1111/ecog.02881 |
|
Sapkota B B, Popescu S, Rajan N, et al. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton. Scientific Reports, 2022, 12 (1): 19580.
doi: 10.1038/s41598-022-23399-z |
|
Shahriari B, Swersky K, Wang Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization. Proceedings of the IEEE, 2016, 104 (1): 148- 175.
doi: 10.1109/JPROC.2015.2494218 |
|
Shen L, Ding C J, Zhang W X, et al. The Populus koreana genome provides insights into the biosynthesis of plant aroma. Industrial Crops and Products, 2023a, 197, 116453.
doi: 10.1016/j.indcrop.2023.116453 |
|
Shen S Q, Zhan C S, Yang C K, et al. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Molecular Plant, 2023b, 16 (1): 43- 63.
doi: 10.1016/j.molp.2022.09.007 |
|
Sirsat M S, Oblessuc P R, Ramiro R S. Genomic prediction of wheat grain yield using machine learning. Agriculture, 2022, 12 (9): 1406.
doi: 10.3390/agriculture12091406 |
|
Tang Z C, Chen G X, Chen S Z, et al. Modal-nexus auto-encoder for multi-modality cellular data integration and imputation. Nature Communications, 2024, 15 (1): 9021.
doi: 10.1038/s41467-024-53355-6 |
|
Tardieu F, Cabrera-Bosquet L, Pridmore T, et al. Plant phenomics, from sensors to knowledge. Current Biology, 2017, 27 (15): R770- R783.
doi: 10.1016/j.cub.2017.05.055 |
|
Tomofuji Y, Sonehara K, Kishikawa T, et al. Reconstruction of the personal information from human genome reads in gut metagenome sequencing data. Nature Microbiology, 2023, 8 (6): 1079- 1094.
doi: 10.1038/s41564-023-01381-3 |
|
Wang H, Cimen E, Singh N, et al. Deep learning for plant genomics and crop improvement. Current Opinion in Plant Biology, 2020, 54, 34- 41.
doi: 10.1016/j.pbi.2019.12.010 |
|
Wang K L, Ali Abid M, Rasheed A, et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant, 2023, 16 (1): 279- 293.
doi: 10.1016/j.molp.2022.11.004 |
|
Wang L L, Zhang H Q, Lei K X, et al. A novel forest dynamic growth visualization method by incorporating spatial structural parameters based on convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 3471- 3488. | |
Wang L P, Wang Y L, Chang Q. Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods, 2016, 111, 21- 31.
doi: 10.1016/j.ymeth.2016.08.014 |
|
Wang Q, Qiao W Y, Zhang H H, et al. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma. Frontiers in Immunology, 2022, 13, 1019638.
doi: 10.3389/fimmu.2022.1019638 |
|
Wang X, Yang Y, Liu J, et al. The stacking strategy-based hybrid framework for identifying non-coding RNAs. Briefings in Bioinformatics, 2021, 22 (5): bbab023.
doi: 10.1093/bib/bbab023 |
|
Xing D, Wang Y L, Sun P H, et al. A CNN-LSTM-att hybrid model for classification and evaluation of growth status under drought and heat stress in Chinese fir (Cunninghamia lanceolata). Plant Methods, 2023, 19 (1): 66.
doi: 10.1186/s13007-023-01044-8 |
|
Xu M L, Yang Y Z, Han M, et al. Spatio-temporal interpolated echo state network for meteorological series prediction. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (6): 1621- 1634.
doi: 10.1109/TNNLS.2018.2869131 |
|
Xu W J, Cheng H, Zhu S R, et al. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. New Phytologist, 2021, 231 (4): 1478- 1495.
doi: 10.1111/nph.17338 |
|
Xu Y B, Zhang X P, Li H H, et al. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant, 2022, 15 (11): 1664- 1695.
doi: 10.1016/j.molp.2022.09.001 |
|
Yan J, Wang X F. Machine learning bridges omics sciences and plant breeding. Trends in Plant Science, 2023, 28 (2): 199- 210.
doi: 10.1016/j.tplants.2022.08.018 |
|
Yang M G, Chen S K, Huang Z P, et al. Deep learning-enabled discovery and characterization of HKT genes in Spartina alterniflora. The Plant Journal, 2023a, 116 (3): 690- 705.
doi: 10.1111/tpj.16397 |
|
Yang X H, Xi Z J, Li J P, et al. Deep transfer learning-based multi-object detection for plant stomata phenotypic traits intelligent recognition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023b, 20 (1): 321- 329.
doi: 10.1109/TCBB.2021.3137810 |
|
Yoosefzadeh-Najafabadi M, Eskandari M, Torabi S, et al. Machine-learning-based genome-wide association studies for uncovering QTL underlying soybean yield and its components. International Journal of Molecular Sciences, 2022, 23 (10): 5538.
doi: 10.3390/ijms23105538 |
|
Zavaliev R, Dong X N. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Molecular Cell, 2024, 84 (1): 131- 141.
doi: 10.1016/j.molcel.2023.11.018 |
|
Zhang K L, Liang J T, Fu Y H, et al. AGIDB: a versatile database for genotype imputation and variant decoding across species. Nucleic Acids Research, 2024, 52 (D1): D835- D849.
doi: 10.1093/nar/gkad913 |
|
Zhao T, Zhan Z P, Jiang D H. Histone modifications and their regulatory roles in plant development and environmental memory. Journal of Genetics and Genomics, 2019, 46 (10): 467- 476.
doi: 10.1016/j.jgg.2019.09.005 |
|
Zheng C, Zhou J, Yuan X Y, et al. Elevating plant immunity by translational regulation of a rice WRKY transcription factor. Plant Biotechnology Journal, 2024a, 22 (4): 1033- 1048.
doi: 10.1111/pbi.14243 |
|
Zheng M K, You S, Wang F, et al. Weak augmentation guided relational self-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024b, 46 (12): 8502- 8516.
doi: 10.1109/TPAMI.2024.3406907 |
|
Zheng T C, Zhuo X K, Li L L, et al. Genome-wide analysis of the D-type cyclin gene family reveals differential expression patterns and stem development in the woody plant Prunus mume. Forests, 2019, 10 (2): 147.
doi: 10.3390/f10020147 |
|
Zhou J X, Xiao L, Huang R, et al. 2023. Local diversity of drought resistance and resilience in Populus tomentosa correlates with the variation of DNA methylation. Plant, Cell & Environment, 46(2): 479−497. | |
Zhu G T, Wang S C, Huang Z J, et al. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell, 172(1/2): 249-261. e12. |
[1] | Wanying Xie,Wenping Liu,Han Wang. UAV Images of Pine Forests for Early Detection of Pine Wood Nematode Infestation [J]. Scientia Silvae Sinicae, 2024, 60(9): 124-133. |
[2] | Jiandong Qi,Shangzi Zheng,Ziyi Chen,Zhongtian Ma. Wildlife Image Recognition of Infrared Cameras in Beijing Area Based on an Improvement ConvNeXt Model [J]. Scientia Silvae Sinicae, 2024, 60(8): 33-45. |
[3] | Dan Pan,Luyi Luo,Kaiwen Ji,Fanbin Kong. Impact of Rural E-Commerce Development on Intra-Regional Income Gap and Shared Prosperity in Forested Areas [J]. Scientia Silvae Sinicae, 2024, 60(5): 35-50. |
[4] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[5] | Zhikang Tian,Zhedong Ge,Huanqi Zheng,Zhishuai Zheng,Yucheng Zhou. Microscopic Identification Methods for 75 Types of Hardwood Based on Deep Neural Network [J]. Scientia Silvae Sinicae, 2024, 60(10): 94-103. |
[6] | Jiandong Qi,Zhongtian Ma,Dehuai Zhang,Yun Tian. Wildlife Image Recognition in Miyun District Based on BS-ResNeXt-50 [J]. Scientia Silvae Sinicae, 2023, 59(8): 112-122. |
[7] | Qiangying Jiao,Zongfu Han,Weiye Wang,Di Liu,Pengxu Pan,Bo Li,Nianci Zhang,Ping Wang,Jinhua Tao,Meng Fan. Driving Factors and Forecasting Model of Lightning-Caused Forest Fires in Daxing’ anling Mountains Based on Multi-Sources Data and Machine Learning Method [J]. Scientia Silvae Sinicae, 2023, 59(6): 74-87. |
[8] | Nannan Yang,Yan Bai,Suyi Jiang,Chunmei Yang,Kaihong Xu. Recognition Method of Plate and Wood Based on ALexNet Optimaization [J]. Scientia Silvae Sinicae, 2022, 58(3): 149-158. |
[9] | Jia Li,Lan Lan,Zuozhong Zhang,Wentao Yuan,Demin Gao,Shuqin Zong,Qiaolin Ye. Inversion Technology of Forest Fuel Moisture Content Based on Deep Learning [J]. Scientia Silvae Sinicae, 2022, 58(10): 47-58. |
[10] | Yan Zhou,Wenping Liu,Youqing Luo,Shixiang Zong. Small Object Detection for Infected Trees Based on the Deep Learning Method [J]. Scientia Silvae Sinicae, 2021, 57(3): 98-107. |
[11] | Ying Guo,Zengyuan Li,Erxue Chen,Xu Zhang,Lei Zhao,Yan Chen,Yahui Wang. A Deep Learning Method for Forest Fine Classification Based on High Resolution Remote Sensing Images: Two-Branch FCN-8s [J]. Scientia Silvae Sinicae, 2020, 56(3): 48-60. |
[12] | Mingwei Shao,Junyu Dong. A New Algorithm for Automatic Optimizing Cross-Cut Saw Based on Deep Learning Algorithm [J]. Scientia Silvae Sinicae, 2020, 56(12): 123-129. |
[13] | Li Minghe;Yang Changyan;Shen Baoxian. METHODS FOR MASS PRODUCTION OF IMPROVED STOCKS BY ROOT CUTTINGS OF CHINESE FIR [J]. , 1990, 26(4): 363-367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||