Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (8): 116-128.doi: 10.11707/j.1001-7488.LYKX20240674
• Research papers • Previous Articles Next Articles
Zihan Huang1,Qiaoling Han1,2,3,4,Yue Zhao1,2,3,4,*(),Yandong Zhao1,2,3,4,Meihui Song1
Received:
2024-11-12
Online:
2025-08-25
Published:
2025-09-02
Contact:
Yue Zhao
E-mail:zhaoyue0609@126.com
CLC Number:
Zihan Huang,Qiaoling Han,Yue Zhao,Yandong Zhao,Meihui Song. Multi-Scale Fusion Method of Soil CT/SEM Images Based on CycleGAN[J]. Scientia Silvae Sinicae, 2025, 61(8): 116-128.
Table 3
100% moisture content soil column fusion data comparison before and after"
N | 融合前Pre-fusion | 融合后Post-fusion | |||||||
NP | P(%) | C(%) | FD | NP | P(%) | C(%) | FD | ||
d0 | |||||||||
d1 | |||||||||
r1 | |||||||||
d3 | |||||||||
r3 | |||||||||
d5 | |||||||||
r5 |
冯怀平, 马德良, 刘启塬, 等. 基于扫描电镜图像的土体三维视孔隙率定量计算方法. 岩土工程学报, 2019, 41 (3): 574- 580.
doi: 10.11779/CJGE201903021 |
|
Feng H P, Ma D L, Liu Q Y, et al. Method for calculating three dimensional apparent porosity of soils based on SEM images. Chinese Journal of Geotechnical Engineering, 2019, 41 (3): 574- 580.
doi: 10.11779/CJGE201903021 |
|
韩巧玲, 赵 玥, 赵燕东, 等. 基于全卷积网络的土壤断层扫描图像中孔隙分割. 农业工程学报, 2019a, 35 (2): 128- 133. | |
Han Q L, Zhao Y, Zhao Y D, et al. Soil pore segmentation of computed tomography images based on fully convolutional network. Transactions of the Chinese Society of Agricultural Engineering, 2019a, 35 (2): 128- 133. | |
韩巧玲, 赵 玥, 赵燕东, 等. 基于细化法的土壤孔隙骨架提取算法研究. 农业机械学报, 2019, 50 (9): 229- 234.
doi: 10.6041/j.issn.1000-1298.2019.09.027 |
|
Han Q L, Zhao Y, Zhao Y D, et al. Skeleton extracting algorithm for soil pore based on thinning method. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (9): 229- 234.
doi: 10.6041/j.issn.1000-1298.2019.09.027 |
|
韩巧玲. 2020. 基于CT图像的黑土大孔隙精细分割与重构方法研究. 北京: 北京林业大学. | |
Han Q L. 2020. Fine segmentation and reconstruction of black soil macropore based on CT image. Beijing: Beijing Forestry University.[in Chinese] | |
解宪丽, 夏成业, 殷 彪, 等. 三维空间土壤推测与土壤模型构建研究进展. 土壤学报, 2025, 62 (1): 14- 28. | |
Xie X L, Xia C Y, YIN B, et al. A Review of Soil 3D Prediction and Modelling Techniques. ActaPedologica Sinica, 2025, 62 (1): 14- 28. | |
刘 博. 2023. 冻融条件对黑土结构特征及土壤分离能力的影响试验研究. 沈阳: 沈阳农业大学. | |
Liu B. 2023. Experimental study on effects of freeze-thaw conditions on structure characteristics and detachment capacity of black soil. Shenyang: Shenyang Agricultural University.[in Chinese] | |
刘 佳, 范昊明, 周丽丽, 等. 冻融循环对黑土容重和孔隙度影响的试验研究. 水土保持学报, 2009, 23 (6): 186- 189.
doi: 10.3321/j.issn:1009-2242.2009.06.041 |
|
Liu J, Fan H M, Zhou L L, et al. Study on effects of freeze-thaw cycle on bulk density and porosity of black soil. Journal of Soil and Water Conservation, 2009, 23 (6): 186- 189.
doi: 10.3321/j.issn:1009-2242.2009.06.041 |
|
刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用. 植物生态学报, 2011, 35 (12): 1209- 1218.
doi: 10.3724/SP.J.1258.2011.01209 |
|
Liu X D, Qiao Y N, Zhou G Y. Controlling action of soil organic matter on soil moisture retention and its availability. Chinese Journal of Plant Ecology, 2011, 35 (12): 1209- 1218.
doi: 10.3724/SP.J.1258.2011.01209 |
|
毛涵杨, 彭 晨, 李 晨, 等. 2023. 面向开放表面的神经移动立方体算法. 浙江大学学报(理学版), 50(6): 692−700, 710. | |
Mao H Y, Peng C, Li C, et al. 2023. Neural marching cubes for open surfaces. Journal of Zhejiang University (Science Edition), 50(6): 692−700, 710. [in Chinese] | |
孟 杰. 2019. 马兰黄土结构特征及其劣化机理试验研究. 西安: 长安大学. | |
Meng J. 2019. Experimental Study on Structural Characteristics and Deterioration Mechanism of Malan Loess. Xi’an: Chang’an University.[in Chinese] | |
唐 超. 2021. 医学CT图像超分辨率重建及应用技术研究. 郑州: 战略支援部队信息工程大学. | |
Tang C. 2021. Research on Medical Computed Tomography Image Super-Resolution Reconstruction and Application Technology. Zhengzhou: Strategic Support Force Information Engineering University.[in Chinese] | |
夏祥友, 王恩姮, 杨小燕, 等. 模拟冻融循环对黑土黏化层孔隙结构的影响. 北京林业大学学报, 2015, 37 (6): 70- 76. | |
Xia X Y, Wang E H, Yang X Y, et al. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles. Journal of Beijing Forestry University, 2015, 37 (6): 70- 76. | |
张伏光, 蒋明镜. 基于微观破损机理的胶结砂土三维本构模型研究. 岩土工程学报, 2018, 40 (8): 1424- 1432.
doi: 10.11779/CJGE201808007 |
|
Zhang F G, Jiang M J. Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation. Chinese Journal of Geotechnical Engineering, 2018, 40 (8): 1424- 1432.
doi: 10.11779/CJGE201808007 |
|
赵利军, 王 可, 张晋京, 等. 2023. 深度图超分辨率重建研究综述. 计算机应用研究, 40(6): 1621−1628, 1640. | |
Zhao L J, Wang K, Zhang J J, et al. 2023. Review of depth map super-resolution reconstruction research. Application Research of Computers, 40(6): 1621−1628, 1640. [in Chinese] | |
赵 玥, 刘 雷, 韩巧玲, 等. 基于CT图像的土壤孔隙结构重构. 农业机械学报, 2018, 49 (S1): 401- 406.
doi: 10.6041/j.issn.1000-1298.2018.S0.054 |
|
Zhao Y, Liu L, Han Q L, et al. Reconstruction of Soil Pore Structure Based on CT Images. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (S1): 401- 406.
doi: 10.6041/j.issn.1000-1298.2018.S0.054 |
|
周希博. 2023. 基于改进生成式对抗网络的土壤CT图像三维超分辨率重建. 北京: 北京林业大学. | |
Zhou X B. 2023. 3D Super-Resolution of soil CT images based on improved generative adversarial network. Beijing: Beijing Forestry University.[in Chinese] | |
Bai H, Zhou X B, Zhao Y, et al. Soil CT image quality enhancement via an improved super-resolution reconstruction method based on GAN. Computers and Electronics in Agriculture, 2023, 213, 108177.
doi: 10.1016/j.compag.2023.108177 |
|
Bhattacharyya B K. Bicubic spline interpolation as a method for treatment of potential field data. Geophysics, 1969, 34 (3): 402- 423.
doi: 10.1190/1.1440019 |
|
Borrelli P, Robinson D A, Panagos P, et al. Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (36): 21994- 22001. | |
Dong C, Loy C C, He K M, et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 295- 307.
doi: 10.1109/TPAMI.2015.2439281 |
|
Han Q L, Liu L, Zhao Y D, et al. A neighborhood Median weighted fuzzy c-means method for soil pore identification. Pedosphere, 2021, 31 (5): 746- 760.
doi: 10.1016/S1002-0160(21)60034-6 |
|
Hapca S, Baveye P C, Wilson C, et al. Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-ray CT images. PLoS One, 2015, 10 (9): e0137205.
doi: 10.1371/journal.pone.0137205 |
|
Karsanina M V, Gerke K M, Skvortsova E B, et al. Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma, 2018, 314, 138- 145.
doi: 10.1016/j.geoderma.2017.10.055 |
|
Kingma D P, Ba J, Hammad M M. 2014. Adam: a method for stochastic optimization. 1412.6980. https://arxiv.org/abs/1412.6980v9. | |
Ledig C, Theis L, Huszár F, et al. 2017. Photo-realistic single image super-resolution using a generative adversarial network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA. IEEE, 105−114. | |
Liu M L, Mukerji T. 2022a. Multiscale fusion of digital rock images based on deep generative adversarial networks. Geophysical Research Letters, 49(9): e2022GL098342. | |
Liu Z, Mao H Z, Wu C Y, et al. 2022b. A ConvNet for the 2020s. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA. IEEE, 11966−11976. | |
Moslemipour A, Sadeghnejad S, Enzmann F, et al. Image-based multi-scale reconstruction of unresolved microporosity in 3D heterogeneous rock digital twins using cross-correlation simulation and watershed algorithm. Transport in Porous Media, 2024, 151 (10): 2215- 2240. | |
Niu Y F, Wang Y D, Mostaghimi P, et al. 2020. An innovative application of generative adversarial networks for physically accurate rock images with an unprecedented field of view. Geophysical Research Letters, 47(23): e2020GL089029. | |
Parsania M P S, Virparia D P V. A comparative analysis of image interpolation algorithms. Ijarcce, 2016, 5 (1): 29- 34.
doi: 10.17148/IJARCCE.2016.5107 |
|
Pot V, Zhong X, Baveye P C. Effect of resolution, reconstruction settings, and segmentation methods on the numerical calculation of saturated soil hydraulic conductivity from 3D computed tomography images. Geoderma, 2020, 362, 114089.
doi: 10.1016/j.geoderma.2019.114089 |
|
Rukundo O, Cao H Q. 2012. Nearest neighbor value interpolation. 1211.1768. https://arxiv.org/abs/1211.1768v2. | |
Zhang H, He H L, Gao Y J, et al. Applications of Computed Tomography (CT) in environmental soil and plant sciences. Soil and Tillage Research, 2023, 226, 105574.
doi: 10.1016/j.still.2022.105574 |
|
Zhu J Y, Park T, Isola P, et al. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE international conference on computer vision, 2223−2232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||