Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (3): 108-120.doi: 10.11707/j.1001-7488.LYKX20240174
• Research papers • Previous Articles Next Articles
Shiji Yang1,Yanfang Wan2,Yushi Bai2,Dongmei Wang1,*(),Pengtao Yu2,Yanhui Wang2,Weiyue Wang1,Yujia Chen1
Received:
2024-04-01
Online:
2025-03-25
Published:
2025-03-27
Contact:
Dongmei Wang
E-mail:dmwang@126.com
CLC Number:
Shiji Yang,Yanfang Wan,Yushi Bai,Dongmei Wang,Pengtao Yu,Yanhui Wang,Weiyue Wang,Yujia Chen. Transpiration of Larix gmelinii var. principis-rupprechtii Plantations on Different Slope Aspects in Liupan Mountains in Response of Environmental Factors[J]. Scientia Silvae Sinicae, 2025, 61(3): 108-120.
Table 2
Basic characteristics of sample plots and sample trees"
样地 Sample plots | 坡向 Slope aspect (°) | 海拔 Altitude/m | 坡度 Slope (°) | 林分密度 Stand density/ (plant·hm?2) | 林冠郁闭度 Canopy density | 林龄 Tree age/a | 胸径 DBH/cm | 树高 Tree height/m | 枝下高 Clear length/m | 冠幅直径 Canopy diameter/m |
西北坡NW50° | ?50° | 24 | 0.73 | 24 | 10.9±3.5 | 8.7±2.6 | 2.8±1.3 | 3.0±1.0 | ||
正北坡N0° | 0° | 26 | 0.75 | 23 | 13.5±3.1 | 10.8±2.5 | 2.8±1.5 | 3.6±1.3 | ||
东北坡NE30° | 30° | 32 | 0.73 | 24 | 12.7±4.2 | 10.6±2.5 | 4.6±1.8 | 3.1±0.9 |
Table 3
Basic information about the sample tree"
样地 Plot | 树号 Tree No. | 胸径 DBH/cm | 树高 Height/m | 冠幅直径 Crown diameter/m | 胸高边材面积 Sapwood area/cm2 |
西北坡 NW50° | 1 | 10.8 | 10.3 | 2.81 | 61.57 |
2 | 12.6 | 8.7 | 3.94 | 79.59 | |
3 | 14.6 | 10.8 | 3.66 | 101.72 | |
4 | 16.1 | 11.7 | 4.04 | 119.72 | |
正北坡 N0° | 5 | 11.2 | 10 | 1.8 | 65.41 |
6 | 13.9 | 13.1 | 3.92 | 93.73 | |
7 | 15.2 | 9.5 | 4.52 | 108.78 | |
8 | 17.2 | 12.8 | 4.44 | 133.65 | |
东北坡 NE30° | 9 | 11.7 | 10.3 | 3.57 | 70.35 |
10 | 14 | 13.4 | 3.56 | 94.86 | |
11 | 15.3 | 12.2 | 3.11 | 109.97 | |
12 | 18.8 | 13.1 | 4.93 | 154.99 |
Table 4
Multi-factors coupled models of daily stand transpiration of plots at different slope aspects"
样地Plot | 模型 Model | R2 |
西北坡NW50° | 0.88 | |
正北坡N0° | 0.82 | |
东北坡NE30° | 0.85 |
曹恭祥, 王云霓, 郭 中, 等. 六盘山南侧华北落叶松人工林蒸腾对土壤水分和潜在蒸散的响应. 应用生态学报, 2020, 31 (10): 3376- 3384. | |
Cao G X, Wang Y N, Guo Z, et al. Responses of transpiration to variation in evaporative demands and soil water in a larch plantation at the south side of Liupan Mountains, China. Chinese Journal of Applied Ecology, 2020, 31 (10): 3376- 3384. | |
曹恭祥. 2014. 六盘山香水河小流域植被结构水文影响及其坡面尺度效应. 北京: 中国林业科学研究院. | |
Cao G X. 2014. Hydrological impact and the slope scale effect of the vegetation structure in the Xiangshuihe watershed in Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
曹 铨, 王自奎, 来兴发, 等. 黄土高原苹果树生育期树干液流特征及其影响因子研究. 干旱地区农业研究, 2023, 41 (4): 267- 274, 288. | |
Cao Q, Wang Z K, Lai X F, et al. Characteristics and its influencing factors of sap flow of apple trees during growth period in the Loess Plateau. Agricultural Research in the Arid Areas, 2023, 41 (4): 267- 274, 288. | |
冯永建, 马长明, 王彦辉, 等. 华北落叶松人工林蒸腾特征及其与土壤水势的关系. 中国水土保持科学, 2010, 8 (1): 93- 98.
doi: 10.3969/j.issn.1672-3007.2010.01.017 |
|
Feng Y J, Ma C M, Wang Y H, et al. Relationship between the characteristics of transpiration of Larix pricipi-rupprechtii forest and soil water potential. Science of Soil and Water Conservation, 2010, 8 (1): 93- 98.
doi: 10.3969/j.issn.1672-3007.2010.01.017 |
|
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017, 72 (5): 863- 874.
doi: 10.11821/dlxb201705008 |
|
Gao H D, Pang G W, Li Z B et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017, 72 (5): 863- 874.
doi: 10.11821/dlxb201705008 |
|
韩新生, 王彦辉, 李振华, 等. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子. 林业科学, 2019, 55 (9): 11- 21. | |
Han X S, Wang Y H, Li Z H et al. Daily forest floor evapotranspiration of Larix principis-rupprechtii plantation and its influencing factors in the semi-arid area of Liupan Mountains. Scientia Silvae Sinicae, 2019, 55 (9): 11- 21. | |
李滨勇, 陈海滨, 唐海萍. 基于AHP 和模糊综合评判法的北疆各地州生态脆弱性评价. 北京师范大学学报(自然科学版), 2010, 46 (2): 197- 201. | |
Li B Y, Chen H B, Tang H P. Assessing ecological fragility with AHP and fuzzy integrated evaluation in autonomous prefectures of northern Xinjiang. Journal of Beijing Normal University (Natural Science), 2010, 46 (2): 197- 201. | |
李振华. 2014. 六盘山叠叠沟典型植被蒸散及水文要素的坡面尺度效应. 北京: 中国林业科学研究院. | |
Li Z H. 2014. The evapotranspiration of typical vegetation and the scale effect of the hydrologic features in slopes of Diediegou watershed of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
刘泽彬. 2018. 六盘山坡面华北落叶松林水文影响的时空变化及尺度转换. 北京: 中国林业科学研究院. | |
Liu Z B. 2018. Spatio-temporal variations and scale transition of hydrological impact of Larix principis-ruprechtii plantation on a slope of Liupan Mountains, China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
秦颢萍, 刘泽彬, 郭建斌, 等. 环境和冠层结构对华北落叶松林树干液流的影响. 应用生态学报, 2021, 32 (5): 1681- 1689. | |
Qin H P, Liu Z B, Guo J B, et al. Effects of environment and canopy structure on stem sap flow in a Larix principis-rupprechtii plantation. Chinese Journal of Applied Ecology, 2021, 32 (5): 1681- 1689. | |
尚友贤, 满秀玲, 徐志鹏, 等. 多年冻土区白桦次生林蒸腾特征及其对影响因子的响应. 水土保持学报, 2023, 37 (2): 310- 319. | |
Shang Y X, Man X L, Xu Z P, et al. Transpiration characteristics and its response to influence factors of Betula platyphylla secondary forest in permafrost area. Journal of Soil and Water Conservation, 2023, 37 (2): 310- 319. | |
田 奥. 2019. 六盘山半湿润区华北落叶松人工林的多种功能时空变化与优化管理. 北京: 中国林业科学研究院. | |
Tian A. 2019. The spatio-temporal variation and optimal management of the multiple functions of larch plantation in the semi-humid Liupan Mountains of Northwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
涂立辉. 2020. 六盘山叠叠沟小流域四种典型植物群落的多功能评价. 北京: 中国林业科学研究院. | |
Tu L H. 2020. Multifunctional evaluation of four typical plant communities in Diediegou watershed of Liupan Mountain, China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
万艳芳. 2023. 六盘山华北落叶松人工林蒸腾和生长过程对干旱的响应. 北京: 中国林业科学研究院. | |
Wan Y F. 2023. Responses of transpiration and growth process in larch plantation to drought in the Liupan Mountains, Northwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王亚蕊. 2017. 基于土壤水分植被承载力的叠叠沟小流域植被优化配置. 北京: 中国林业科学研究院. | |
Wang Y R. 2017. Optimal disposition of vegetations based on soil water carrying capacity in Diediegou Catchment. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王艳兵. 2016. 六盘山叠叠沟主要植被类型的水文过程及其坡面变化. 北京: 中国林业科学研究院. | |
Wang Y B. 2016. The hydrological processes of typical vegetation and their slope variations at the Diediegou of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王云霓, 曹恭祥, 王彦辉, 等. 六盘山南侧华北落叶松人工林冠层蒸腾及其影响因子的坡位差异. 应用生态学, 2018, 29 (5): 1503- 1514. | |
Wang Y N, Cao G X, Wang Y H, et al. Canopy transpiration of Larix principis-rupprechtii plantation and its impact factors in different slope locations at the south side of Liupan Mountains, China. Chinese Journal of Applied Ecology, 2018, 29 (5): 1503- 1514. | |
王云霓. 2017. 六盘山南坡典型森林的水文影响及其坡面尺度效应. 北京: 中国林业科学研究院. | |
Wang Y N. 2017. The hydrological impacts of typical forests and their slope scale effects at the south side of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
熊 伟, 王彦辉, 于澎涛, 等. 华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推. 林业科学, 2008, 44 (1): 34- 40.
doi: 10.3321/j.issn:1001-7488.2008.01.006 |
|
Xiong W, Wang Y H, Yu P T, et al. Variation of sap flow among individual trees and scaling-up for estimation of transpiration of Larix principis-rupprechtii Stand. Scientia Silvae Sinicae, 2008, 44 (1): 34- 40.
doi: 10.3321/j.issn:1001-7488.2008.01.006 |
|
Allen R G, Pereira, L S, Raes D, et al. 1998. Crop evapotranspiration– guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. 56. | |
Attia Z, Domec J C, Oren R, et al. Growth and physiological responses of isohydric and anisohydric poplars to drought. Journal of Experimental Botany, 2015, 66 (14): 4373- 4381.
doi: 10.1093/jxb/erv195 |
|
Chang X X, Zhao W Z, Liu H, et al. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 2014, 198/199, 209- 220.
doi: 10.1016/j.agrformet.2014.08.015 |
|
Duan H L, Duursma R A, Huang G M, et al. 2014. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant, Cell & Environment. 37(7): 1598–1613. | |
Forner A, Aranda I, Granier A, et al. Differential impact of the most extreme drought event over the last half century on growth and sap flow in two coexisting Mediterranean trees. Plant Ecology, 2014, 215 (7): 703- 719.
doi: 10.1007/s11258-014-0351-x |
|
Fried J S, Torn M S, Mills E. The impact of climate change on wildfire severity: a regional forecast for northern California. Climatic Change, 2004, 64 (1/2): 169- 191.
doi: 10.1023/B:CLIM.0000024667.89579.ed |
|
Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 2000, 100 (4): 291- 308.
doi: 10.1016/S0168-1923(99)00151-3 |
|
Granier A, Bréda N. 1996. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Annales des Sciences Forestières 53(2): 537–546. | |
Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology. 3(4): 309–320. | |
Hawthorne S, Miniat C F. Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology, 2018, 11 (1): e1825.
doi: 10.1002/eco.1825 |
|
Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1976, 273 (927): 593- 610. | |
Knutti R, Rogelj J, Plattner G-K, et al. 2013. IPCC. Climate change 2013: the physical science basis. contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK; New York, NY, USA: Cambridge University Press. | |
Kohnke H, Dreibelbis F R, Davidson J M, et al. 1940. A survey and discussion of lysimeters and a bibliography on their construction and performance. Washington, D. C. USA: U. S. Department of Agriculture, 372. | |
Kumagai T, Aoki S, Shimizu T, et al. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed. Tree Physiology, 2007, 27 (2): 161- 168.
doi: 10.1093/treephys/27.2.161 |
|
Kume T, Tsuruta K, Komatsu H, et al. Differences in sap flux-based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology, 2016, 9 (6): 1105- 1116.
doi: 10.1002/eco.1709 |
|
Kunert N, Schwendenmann L, Hölscher D. Seasonal dynamics of tree sap flux and water use in nine species in Panamanian forest plantations. Agricultural and Forest Meteorology, 2010, 150 (3): 411- 419.
doi: 10.1016/j.agrformet.2010.01.006 |
|
Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agricultural and Forest Meteorology, 2002, 112 (2): 67- 85.
doi: 10.1016/S0168-1923(02)00060-6 |
|
Liu B B, Yu P T, Zhang X, et al. 2022. Transpiration sensitivity to drought in Quercus wutaishansea Mary forests on shady and sunny slopes in the Liupan Mountains, northwestern China. Forests 13(12): 1999. | |
Llorens P, Poyatos R, Latron J, et al. A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean mountain conditions. Hydrological Processes, 2010, 24 (21): 3053- 3064.
doi: 10.1002/hyp.7720 |
|
Martin-StPaul N, Delzon S, Cochard H. Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 2017, 20 (11): 1437- 1447.
doi: 10.1111/ele.12851 |
|
McCarthy H R, Pataki D E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosystems, 2010, 13 (4): 393- 414.
doi: 10.1007/s11252-010-0127-6 |
|
Metzen D, Sheridan G J, Benyon R G, et al. Spatio-temporal transpiration patterns reflect vegetation structure in complex upland terrain. Science of the Total Environment, 2019, 694, 133551.
doi: 10.1016/j.scitotenv.2019.07.357 |
|
Pivovaroff A L, Cook V M W, Santiago L S. 2018. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Plant, Cell & Environment, 41(11): 2617–2626. | |
Shi L, Liu H Y, Xu C Y, et al. Decoupled heatwave-tree growth in large forest patches of Larix sibirica in northern Mongolian Plateau. Agricultural and Forest Meteorology, 2021, 311, 108667.
doi: 10.1016/j.agrformet.2021.108667 |
|
Sperry J S. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology, 2000, 104 (1): 13- 23.
doi: 10.1016/S0168-1923(00)00144-1 |
|
Steppe K, Vandegehuchte M W, Tognetti R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiology, 2015, 35 (4): 341- 345.
doi: 10.1093/treephys/tpv033 |
|
Tian A, Wang Y H, Webb A A, et al. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China. Journal of Hydrology, 2019, 571, 503- 515.
doi: 10.1016/j.jhydrol.2019.02.004 |
|
Tie Q, Hu H C, Tian F Q, et al. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agricultural and Forest Meteorology, 2017, 240/241, 46- 57.
doi: 10.1016/j.agrformet.2017.03.018 |
|
Ungar E D, Rotenberg E, Raz-Yaseef N, et al. Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. Forest Ecology and Management, 2013, 298, 39- 51.
doi: 10.1016/j.foreco.2013.03.003 |
|
van Bavel C H, Nakayama F S, Ehrler W L. Measuring transpiration resistance of leaves. Plant Physiology, 1965, 40 (3): 535- 540.
doi: 10.1104/pp.40.3.535 |
|
Wan Y F, Yu P T, Wang Y H, et al. The variation in water consumption by transpiration of Qinghai spruce among canopy layers in the Qilian Mountains, northwestern China. Forests, 2020, 11 (8): 845.
doi: 10.3390/f11080845 |
|
Wang L, Liu Z B, Guo J B, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture. Forest Ecology and Management, 2021, 481, 118749.
doi: 10.1016/j.foreco.2020.118749 |
|
Wang Y H, Xiong W, Gampe S, et al. A water yield-oriented practical approach for multifunctional forest management and its application in dryland regions of China. Journal of the American Water Resources Association, 2015, 51 (3): 689- 703.
doi: 10.1111/1752-1688.12314 |
|
Wu Y H, Zhao P, Zhou M, et al. Environmental factors driving the transpiration of a Betula platyphylla Sukaczev forest in a semi-arid region in North China during different hydrological years. Forests, 2022, 13 (10): 1729.
doi: 10.3390/f13101729 |
|
Xiong W, Oren R, Wang Y H, et al. 2015. Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought. Tree Physiology 35(5): 470–484. | |
Yu F, Faybishenko B, Hunt A, et al. 2017. A simple model of the variability of soil depths. Water, 9(7): 460. | |
Yu S P, Guo J B, Liu Z B, et al. Assessing the impact of soil moisture on canopy transpiration using a modified Jarvis-Stewart model. Water, 2021, 13 (19): 2720.
doi: 10.3390/w13192720 |
|
Zhou X G, Zhu H G, Wen Y G, et al. Effects of understory management on trade-offs and synergies between biomass carbon stock, plant diversity and timber production in eucalyptus plantations. Forest Ecology and Management, 2018, 410, 164- 173.
doi: 10.1016/j.foreco.2017.11.015 |
[1] | Jing Xie,Feng Zhang,Zeyuan Zhou,Haiqun Yu,Yi Han,Chunxin Yang,Wei Jiang,Jinzu Liu,Boen Liu,He Liu. Seasonal Variations in Water Use Efficiency of Plantation Ecosystem in an Urban Park of Beijing [J]. Scientia Silvae Sinicae, 2024, 60(9): 12-17. |
[2] | Bingnan Chen,Fengting Yang,Shengwang Meng,Xiaoqin Dai,Liang Kou,Yifan Chen,Huimin Wang,Xiaoli Fu. Temporal-Spatial Variation and Drivers of Phenology in Pinus massoniana and Pinus elliottii Forests in Hilly Regions with Red Soil [J]. Scientia Silvae Sinicae, 2024, 60(8): 67-78. |
[3] | Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85. |
[4] | Xinsheng Han,Hao Xu,Jinjun Cai,Liguo Dong,Yongzhong Guo,Yueling Wang,Haixia Wan,Yu An. Soil Moisture Dynamics and the Influencing Factors in the Sparse Strip-Planted Prunus sibirica Plantation in the Loess Region of Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(4): 79-90. |
[5] | Fanbo Zhou,Yumin Liu,Yamin Liu,Chongwen Dai,Qi Gao,Yulin Zhang,Yating Zhu. Alleviation Effect and Physiological Mechanism of Exogenous Methyl Jasmonate on Drought Damage of Toona ciliata Seedlings [J]. Scientia Silvae Sinicae, 2024, 60(12): 58-71. |
[6] | Hongzhong Dang,Shuai Chen,Peng Zhong,Hui Han,Risheng Zhang,Xueli Zhang,Changchun Shi. Mechanism and Possible Regulatory Approaches of Interruption in the Natural Regeneration Process of Pinus sylvestris var. mongolica Plantations in China [J]. Scientia Silvae Sinicae, 2024, 60(12): 158-167. |
[7] | Cuixia Li,Pengsen Sun,Zhen Yu,Meirong Sun,Lei Zhang,Shirong Liu. Impacts of Enhanced Vegetation Activity on Regional Evapotranspiration in the Alpine and Subalpine Area of Southwestern China [J]. Scientia Silvae Sinicae, 2024, 60(11): 1-12. |
[8] | Kaixin Tian,Junyuan Xu,Li Dai,Zhi Li,Xiaodong Geng,Zhen Liu,Yanmei Wang. Physiological Response of Idesia polycarpa Seedlings to Extreme High Temperature and High Temperature Plus Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(11): 84-92. |
[9] | Zhiwei Zhang,Yanfang Wan,Pengtao Yu,Yushi Bai,Yanhui Wang,Bingbing Liu,Xiao Wang,Zhenhua Hu. Differences in Response of Daily Transpiration between Larix principis-rupprechtii and Betula platyphylla Plantations to Environmental Factors in the Liupan Mountains [J]. Scientia Silvae Sinicae, 2024, 60(10): 29-39. |
[10] | Yue Fan,Peirun Luo,Wei Wang,Qian Xie,Qingxi Chen. Establishment of Symbiotic System of Piriformospora indica and Rhododendron and Its Effect on Improving Drought Resistance [J]. Scientia Silvae Sinicae, 2024, 60(1): 93-102. |
[11] | Nan Liu,Luping Qu,Xinghao Tang,Haixia Yu,Zilei Zhang,Hao Wang,Changliang Shao,Gang Dong. Effects of Water Conditions and Heat Wave Frequency on the Photosynthetic Characteristics and Growth Rate of Schima superba Seedlings [J]. Scientia Silvae Sinicae, 2023, 59(3): 104-114. |
[12] | Xin Cheng,Chunze Wu,Qingyu Wei,Wei Li,Xing Wei. Growth and Physiological Responses of Fraxinus mandshurica Seedlings Inoculated with Arbuscular Mycorrhizal Fungi to Drought Stress [J]. Scientia Silvae Sinicae, 2023, 59(2): 58-66. |
[13] | Ming Liu,Pietzarka Ulrich,Roloff Andreas,Deshun Zhang. Assessment on the Growth Sensitivity to Drought Stress for Various Tree Species Growing at Diverse Habitats ——A Case Study in Saxony, Germany [J]. Scientia Silvae Sinicae, 2023, 59(11): 12-22. |
[14] | Ren You,Xiangwen Deng,Yanting Hu,Shuai Ouyang,Liang Chen,Wenhua Xiang. Progress on Physiological and Ecological Responses of Trees to Drought Stress and Rewatering [J]. Scientia Silvae Sinicae, 2023, 59(11): 124-136. |
[15] | Min Li, Xizhou Zhao, Haoyun Wang, Zhongke Lu, Guijie Ding. Effects of Drought Stress and Ectomycorrhizal Fungi on the Root Morphology and Exudates of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(7): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||