欢迎访问林业科学,今天是

林业科学 ›› 2026, Vol. 62 ›› Issue (1): 223-230.doi: 10.11707/j.1001-7488.LYKX20240804

• 研究简报 • 上一篇    下一篇

我国4种落叶松人工林的林分优势高和平均高转换模型

何潇1,曾伟生2,陈新云2,黄宏超1,雷相东1,*()   

  1. 1. 林木资源高效生产全国重点实验室 中国林业科学研究院资源信息研究所 北京 100091
    2. 国家林业和草原局林草调查规划院 北京 100714
  • 收稿日期:2024-12-31 修回日期:2025-02-03 出版日期:2026-01-25 发布日期:2026-01-14
  • 通讯作者: 雷相东 E-mail:xdlei@ifirit.ac.cn
  • 基金资助:
    国家重点研发计划课题“典型人工林立地质量评价与生产力提升技术(2022YFD2200501);国家自然科学基金项目“基于生态系统服务多功能性的人工林立地质量评价”(32371879)。

Conversion Models of Stand Dominant Height and Mean Height of the Plantations of Four Larix species in China

Xiao He1,Weisheng Zeng2,Xinyun Chen2,Hongchao Huang1,Xiangdong Lei1,*()   

  1. 1. State Key Laboratory of Efficient Production of Forest Resources  Institute of Forest Resource Information Techniques, Chinese Academy of Forestry Beijing 100091
    2. Academy of Inventory and Planning, National Forestry and Grassland Administration Beijing 100714
  • Received:2024-12-31 Revised:2025-02-03 Online:2026-01-25 Published:2026-01-14
  • Contact: Xiangdong Lei E-mail:xdlei@ifirit.ac.cn

摘要:

目的: 建立全国4种落叶松人工林的林分优势高和平均高转换模型,为落叶松人工林立地质量评价和生长预测提供依据。方法: 基于2021和2022年2期全国林草生态综合监测落叶松人工林样地调查数据,采用对偶回归和线性混合效应模型方法,建立落叶松人工林的林分优势高和平均高转换模型,选取残差平方和、决定系数(R2)、均方根误差和相对均方根误差等指标对模型进行评价。结果: 1) 基于对偶回归模型方法建立的林分优势高和平均高转换模型表现最好,优于线性混合效应模型方法,对偶回归模型方法的平均R2达0.92以上,平均均方根误差1.31~1.34 m,平均相对均方根误差9.63%~9.85%,且可实现优势高与平均高相互预测;2) 考虑树种分组和省(市)分组的对偶回归模型均可进一步提升模型精度,但考虑省(市)分组的模型精度更高。结论: 基于对偶回归模型方法和考虑省(市)分组的林分优势高和平均高转换模型具有较好的适用性和预测效果,可为落叶松人工林立地质量评价提供更为精确的基础模型。

关键词: 林分优势高, 林分平均高, 对偶回归模型, 线性混合效应模型, 落叶松人工林

Abstract:

Objective: This study aims to develop conversion models between the stand dominant height and the mean height of the four larch species (Larix spp.), providing a basis for evaluating the site quality and predicting the growth of larch plantations. Method: Based on the survey data of national forest and grass ecological comprehensive monitoring of plantation plots of Larix species from the 2021 and 2022, dual regression and mixed-effects models were applied to develop conversion models for stand dominant height and mean height. Model performance was assessed using residual sum of squares, coefficient of determination (R2), root mean square error (RMSE) and relative root mean square error (rRMSE). Result: 1) The conversion model between stand dominant height and mean height based on the dual regression model method performed the best, outperforming the linear mixed effect model approach. The dual regression model method had average R2 exceeding 0.92, average RMSEs between 1.31 m and 1.34 m, and average rRMSEs between 9.63% and 9.85%, and was able to achieve mutual prediction between stand dominant height and mean height. 2) Incorporating tree species and province (city) groups into the dual regression model further improved model accuracy, and the model including province (city) groups showed higher accuracy. Conclusion: The dual regression model in incorporating province (city) groups had good applicability and predictive performance in establishing the conversion relationship between stand dominant height and mean height. This approach offers a more accurate and basic forecasting model for site quality evaluation of larch plantations.

Key words: stand dominant height, stand mean height, dual regression model, linear mixed effect model, Larix spp. plantations

中图分类号: