欢迎访问林业科学,今天是

林业科学 ›› 2026, Vol. 62 ›› Issue (1): 207-222.doi: 10.11707/j.1001-7488.LYKX20250273

• 综合评述 • 上一篇    下一篇

基于深度学习的野生动物图像识别方法与挑战

李尧迪1,田野1,张长春1,谢将剑1,赵海涛1,2,*(),张军国1,2,*()   

  1. 1. 北京林业大学工学院 北京林业大学生物多样性智慧监测研究中心 林木资源高效生产全国重点试验室 北京 100083
    2. 陕西省动物研究所 西安 710032
  • 收稿日期:2025-05-05 修回日期:2025-07-07 出版日期:2026-01-25 发布日期:2026-01-14
  • 通讯作者: 赵海涛,张军国 E-mail:zht@xab.ac.cn;zhangjunguo@bjfu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32371874,32401569);北京市自然科学基金项目(6244053);陕西省科学院科技计划项目(2025K-32);陕西省科技计划项目(2025JC-YWGCZ-05, 2025JC-GXPT-037)。

Wildlife Image Recognition Methods and Challenges Based on Deep Learning

Yaodi Li1,Ye Tian1,Changchun Zhang1,Jiangjian Xie1,Haitao Zhao1,2,*(),Junguo Zhang1,2,*()   

  1. 1. School of Technology, Beijing Forestry University Research Center for Biodiversity Intelligent Monitoring, Beijing Forestry University State Key Laboratory of Efficient Production of Forest Resources Beijing 100083
    2. Shaanxi Institute of Zoology Xi’an 710032
  • Received:2025-05-05 Revised:2025-07-07 Online:2026-01-25 Published:2026-01-14
  • Contact: Haitao Zhao,Junguo Zhang E-mail:zht@xab.ac.cn;zhangjunguo@bjfu.edu.cn

摘要:

随着野生动物保护和生态监测需求的不断增长,基于深度学习的图像识别方法在野生动物研究中的应用日益广泛。本研究首先介绍野生动物常用公开数据集,随后详细综述不同深度学习技术在野生动物图像识别中的应用,依据任务需求将识别方法划分为图像级、对象级和像素级3个层级,并重点讨论各层级方法的具体实现及其技术细节。在此基础上,深入探讨野生动物图像识别所面临的核心挑战,涵盖数据层面的诸多问题,如数据质量参差不齐、标注代价高昂且效率低下、样本分布不均衡;同时还从模型与算法角度剖析若干关键技术难题,包括细粒度检测、跨域分布偏移、类增量学习、零样本学习和跨模态学习等。针对上述挑战,总结当前的研究进展与应对策略,并提出未来可能的发展方向,旨在为构建高效、鲁棒且适用于实际监测场景的野生动物智能识别系统提供理论支持和方法参考。

关键词: 野生动物图像识别, 深度学习, 数据不平衡, 迁移学习, 零样本学习, 跨模态学习

Abstract:

With the growing demands for wildlife conservation and ecological monitoring, deep learning-based image recognition methods have been increasingly applied in wildlife research. This paper first introduces commonly used public datasets for wildlife, provides a detailed review of the applications of different deep learning techniques in wildlife image recognition, classifies these recognition methods into three levels (image-level, object-level, and pixel-level) based on task requirements, and focuses on discussing the specific implementation and technical details of the methods at each level. On this basis, the paper further explores the core challenges faced by wildlife image recognition, including various data-level issues such as uneven data quality, high annotation costs with low efficiency, and imbalanced sample distribution. Meanwhile, it also analyzes several key technical problems from the perspective of models and algorithms, including fine-grained detection, cross-domain distribution shift, class-incremental learning, zero-shot learning, and cross-modal learning. In response to the above challenges, the paper summarizes the current research progress and coping strategies, and proposes potential future development directions, aiming to provide theoretical support and methodological references for constructing an efficient, robust, and practically applicable intelligent recognition system for wildlife in real monitoring scenarios.

Key words: wildlife image recognition, deep learning, data imbalance, transfer learning, zero-shot learning, cross-modal learning

中图分类号: