林业科学 ›› 2025, Vol. 61 ›› Issue (7): 157-169.doi: 10.11707/j.1001-7488.LYKX20240646
冉馨1,孙晓梅1,吴春燕1,陈东升1,王宏星2,张守攻1,*()
收稿日期:
2024-10-31
出版日期:
2025-07-20
发布日期:
2025-08-19
通讯作者:
张守攻
E-mail:larchrif@163.com
基金资助:
Xin Ran1,Xiaomei Sun1,Chunyan Wu1,Dongsheng Chen1,Hongxing Wang2,Shougong Zhang1,*()
Received:
2024-10-31
Online:
2025-07-20
Published:
2025-08-19
Contact:
Shougong Zhang
E-mail:larchrif@163.com
摘要:
目的: 设置培育措施与人工模拟气候变化的耦合试验,探讨间伐和降水减少双重影响下日本落叶松人工林土壤理化性质、根系分布与生理特性变化,为未来气候变化背景下落叶松人工林的合理经营提供科学依据。方法: 以辽宁省东部山区19年生日本落叶松人工林为研究对象,2019年4月设置对照(CKN)、未间伐+30%降水减少(CKR)、45%间伐强度+自然降水(T45N)、45%间伐强度+30%降水减少(T45R)4种处理,2023年7月分土层进行土壤和根系取样,测定土壤理化性质、根系分布与生理特性。结果: 1) 间伐和持续降水减少4年后,与对照相比,30%降水减少显著降低0~20 cm土层的土壤含水率、孔隙度、田间持水量,水解性氮、全氮、有效磷、全磷、速效钾和全钾含量,显著增加土壤密度;45%间伐强度和45%间伐强度+30%降水减少显著改善0~20 cm土层的土壤理化性质,间伐的正效应显著高于降水减少的负效应。2) 降水减少显著降低各土层不同水平距离的林木根系特征(根长密度、根表面积密度、根体积密度、根生物量密度),促进根系在20~60 cm土层和各土层水平100~200 cm的分布占比;间伐显著提高各土层水平距离的根系分布和生理特性。3) 主成分综合得分为T45N(1.54)>T45R(1.00)>CKN(–0.62)>CKR(–1.92),45%间伐强度和45%间伐强度+30%降水减少对土壤理化性质和根系特性具有正向影响,间伐可缓解降水减少对土壤理化性质以及根系分布与生理特性的负向影响。4) 相关性分析结果表明,根系呼吸和活力与根系分布、土壤含水率显著正相关,与土壤密度显著负相关。结论: 降水减少显著降低日本落叶松人工林土壤质量以及根系密度与生理活性,间伐显著提高土壤质量以及根系密度与生理活性,且间伐的正向影响显著高于降水减少的负向影响,合理间伐可作为应对未来气候变化背景下降水减少的有效营林措施之一。
中图分类号:
冉馨,孙晓梅,吴春燕,陈东升,王宏星,张守攻. 降水减少和间伐对日本落叶松人工林根系分布与生理特性的影响[J]. 林业科学, 2025, 61(7): 157-169.
Xin Ran,Xiaomei Sun,Chunyan Wu,Dongsheng Chen,Hongxing Wang,Shougong Zhang. Effects of Precipitation Reduction and Thinning on the Root Distribution and Physiological Characteristics of Larix kaempferi[J]. Scientia Silvae Sinicae, 2025, 61(7): 157-169.
表1
2023年样地基本情况①"
处理 Treatments | 胸径 DBH/cm | 树高 Mean height/m | 枝下高 Clean bole height/m | 冠幅 Crown width/m | 林分密度 Stand density /(tree ?hm–2) | 郁闭度 Canopy density |
CKR | 1.33 ± 0.12c | 1.43 ± 0.06d | 1.77 ± 0.06c | 0.42 ± 0.06b | 2 000 ± 32a | 0.89 ± 0.02a |
CKN | 1.50 ± 0.10c | 1.93 ± 0.06c | 2.53 ± 0.12b | 0.51 ± 0.05b | 2 000 ± 32a | 0.89 ± 0.02a |
T45R | 2.27 ± 0.12b | 3.30 ± 0.10b | 3.47 ± 0.21a | 0.63 ± 0.07a | 1 106 ± 41b | 0.69 ± 0.02b |
T45N | 2.90 ± 0.10a | 3.57 ± 0.12a | 3.57 ± 0.06a | 0.71 ± 0.01a | 1 106 ± 41b | 0.69 ± 0.02b |
表2
间伐和降水减少对土壤理化特性的影响①"
土壤理化性质 Physical and chemical properties of soil | 土壤深度 Soil depth/cm | 处理 Treatments | 方差分析 Analysis of variance | ||||||
CKR | CKN | T45R | T45N | 间伐 Thinning | 降水减少 Precipitation reduction | 间伐×降水 减少 Thinning× precipitation reduction | |||
土壤含水率 Soil water content (%) | 0~20 | 11.60 ± 0.10d | 15.11 ± 0.57c | 17.02 ± 0.42b | 20.47 ± 0.35a | P<0.001 | P<0.001 | ns | |
20~40 | 10.96 ± 0.42d | 13.32 ± 0.34c | 15.17 ± 0.46b | 17.66± 0.50a | |||||
40~60 | 9.44 ±0.13c | 11.80 ± 1.03b | 12.32 ± 0.12b | 14.57 ± 0.80a | |||||
土壤密度 Soil bulk density/ (g·cm?3) | 0~20 | 1.48 ±0.01a | 1.45 ± 0.02b | 1.41 ± 0.01c | 1.38 ± 0.02d | P<0.001 | P<0.01 | ns | |
20~40 | 1.54 ±0.02a | 1.48 ± 0.01b | 1.44 ± 0.02c | 1.41 ± 0.01d | |||||
40~60 | 1.58 ±0.04a | 1.53 ± 0.01b | 1.48 ± 0.01c | 1.45 ± 0.01c | |||||
土壤孔隙度 Soil porosity (%) | 0~20 | 44.10 ±0.35d | 45.12 ± 0.60c | 46.83 ± 0.31b | 47.90 ± 0.58a | P<0.001 | P<0.01 | ns | |
20~40 | 41.98 ±0.76d | 44.20 ± 0.33c | 45.81 ± 0.62b | 46.85 ± 0.10a | |||||
40~60 | 40.38 ± 1.25c | 42.40 ± 0.18b | 44.34 ± 0.23a | 45.47 ± 0.38a | |||||
田间持水量 Field capacity (%) | 0~20 | 26.14 ± 0.96d | 28.62 ± 0.21c | 30.44 ± 1.06b | 35.87 ± 1.26a | P<0.001 | P<0.001 | P<0.001 | |
20~40 | 25.62 ± 0.17c | 26.41 ± 0.33c | 29.09 ± 1.33b | 34.97 ± 0.44a | |||||
40~60 | 23.51 ± 0.09c | 24.61 ± 0.75c | 27.50 ± 0.24b | 32.58 ± 1.42a | |||||
全氮 Total nitrogen/ (g·kg?1) | 0~20 | 0.76 ± 0.10c | 0.95 ± 0.07b | 1.74 ± 0.06 a | 1.66 ± 0.08a | P<0.01 | ns | ns | |
20~40 | 0.43 ± 0.05b | 0.48 ± 0.07b | 0.91 ± 0.06 a | 0.53 ± 0.07b | |||||
40~60 | 0.31 ± 0.05b | 0.40 ± 0.10b | 0.79 ± 0.07 a | 0.34 ± 0.07b | |||||
水解性氮 Hydrolyzed nitrogen/ (mg·kg?1) | 0~20 | 77.33 ± 7.86c | 96.43 ±8.06b | 161.67 ± 6.11a | 160.00 ± 10.00a | P<0.05 | ns | ns | |
20~40 | 27.57 ± 7.87c | 45.20 ± 6.49b | 68.20 ± 9.49a | 47.30 ± 7.02b | |||||
40~60 | 22.67 ± 2.99c | 35.93 ± 4.95b | 60.37 ± 8.35a | 31.23 ± 5.70bc | |||||
全磷 Total phosphorus / (g·kg?1) | 0~20 | 0.16 ± 0.02d | 0.21 ± 0.03c | 0.42 ± 0.04b | 0.48 ± 0.05a | P<0.001 | ns | P<0.05 | |
20~40 | 0.12 ± 0.02c | 0.15 ± 0.03c | 0.38 ± 0.04a | 0.28 ± 0.04b | |||||
40~60 | 0.11 ± 0.02c | 0.12 ± 0.02c | 0.36 ± 0.03a | 0.20 ± 0.03b | |||||
有效磷 Available phosphorus / (mg·kg?1) | 0~20 | 2.48 ± 0.40d | 3.80 ± 0.60c | 7.67 ± 0.43a | 5.41 ± 0.44b | ns | P<0.05 | ns | |
20~40 | 1.70 ± 0.16b | 2.18 ± 0.23ab | 2.84 ± 0.42a | 2.49 ± 0.46a | |||||
40~60 | 1.73 ± 0.25b | 1.82 ± 0.24b | 2.44 ± 0.23a | 2.43 ± 0.35a | |||||
全钾 Total potassium / (g·kg?1) | 0~20 | 19.37 ± 0.81b | 21.07 ± 0.86a | 16.30 ± 0.44c | 17.60 ± 0.82c | P<0.001 | P<0.001 | ns | |
20~40 | 20.57 ± 0.67a | 22.47 ± 1.56a | 17.30 ± 1.37b | 20.47 ± 1.50a | |||||
40~60 | 21.63 ± 2.15ab | 24.90 ± 2.10a | 18.40 ± 1.28b | 21.23 ± 1.86ab | |||||
速效钾 Available potassium/ (mg·kg?1) | 0~20 | 63.30 ± 5.25d | 106.57 ± 6.87a | 84.50 ± 4.19c | 95.67 ± 4.93b | ns | ns | ns | |
20~40 | 56.57 ± 5.10a | 66.70 ± 6.10a | 44.87 ± 4.05b | 42.30 ± 6.93b | |||||
40~60 | 52.50 ± 4.60ab | 62.63 ± 7.3a | 42.27 ± 6.60b | 41.37 ± 6.12b | |||||
pH | 0~20 | 6.15 ± 0.05a | 5.62 ± 0.06c | 5.80 ± 0.06b | 5.89 ± 0.05b | P<0.001 | P<0.05 | ns | |
20~40 | 6.17 ± 0.07a | 6.04 ± 0.14ab | 5.98 ± 0.09b | 6.00 ± 0.05ab | |||||
40~60 | 6.28 ± 0.14a | 6.17 ± 0.13a | 5.84 ± 0.10a | 6.18 ± 0.06a |
图2
间伐和降水减少对不同深度根系分布特征的影响 CKR:未间伐+30%降水减少No-thinning + 30% precipitation reduction;CKN:未间伐+自然降水 No-thinning + natural precipitation;T45R:45%间伐强度+30% 降水减少45% thinning intensity + 30% precipitation reduction;T45N:45%间伐强度+自然降水 45% thinning intensity+ natural precipitation. 不同小写字母表示同一土层不同处理在0.05水平上差异显著(P <0.05)。星号代表显著性差异水平(*P <0.05;**P <0.01;***P <0.001),ns代表差异不显著。The different small letters indicate that the different treatments in the same soil layer are significantly different at the 0.05 level (P <0.05). Asterisks indicate the statistical significance (*P <0.05;**P <0.01;***P <0.001), ns means the difference is not significant."
图3
间伐和降水减少对不同深度根系分布占比的影响 CKR:未间伐+30% 降水减少No-thinning + 30% precipitation reduction;CKN:未间伐+自然降水 No-thinning + natural precipitation;T45R:45%间伐强度+30%降水减少 45% thinning intensity + 30% precipitation reduction;T45N:45%间伐强度+ 自然降水 45% thinning intensity+ natural precipitation. 不同小写字母表示同一土层不同处理在0.05水平上差异显著(P <0.05)。星号代表显著性差异水平(*P <0.05;**P <0.01;***P <0.001),ns代表差异不显著。The different small letters indicate that the different treatments in the same soil layer are significantly different at the 0.05 level (P <0.05). Asterisks indicate the statistical significance (*P <0.05;**P <0.01;***P <0.001), ns means the difference is not significant."
图4
间伐和降水减少对不同水平距离根系分布特征的影响 CKR:未间伐+30%降水减少No-thinning + 30% precipitation reduction;CKN:未间伐+自然降水 No-thinning + natural precipitation;T45R:45%间伐强度+30% 降水减少45% thinning intensity+ 30% precipitation reduction;T45N:45%间伐强度+自然降水 45% thinning intensity+ natural precipitation. 不同小写字母表示同一土层不同处理在0.05水平上差异显著(P <0.05)。星号代表显著性差异水平(*P <0.05;**P <0.01;***P <0.001),ns代表差异不显著。"
图5
间伐和降水减少对不同水平距离根系分布占比的影响 CKR:未间伐+30%降水减少 No-thinning + 30% precipitation reduction;CKN:未间伐+自然降水 No-thinning + natural precipitation;T45R:45%间伐强度+30%降水减少 45% thinning intensity + 30% precipitation reduction;T45N:45%间伐强度+自然降水 45% thinning intensity+ natural precipitation. 不同小写字母表示同一土层不同处理在0.05水平上差异显著(P <0.05)。星号代表显著性差异水平(*P <0.05;**P <0.01;***P <0.001),ns代表差异不显著。 The different small letters indicate that the different treatments in the same soil layer are significantly different at the 0.05 level (P <0.05). Asterisks indicate the statistical significance (*P <0.05;**P <0.01;***P <0.001), ns means the difference is not significant."
图6
间伐和降水减少对不同土层和不同直径根系呼吸和根系活力的影响 CKR:未间伐+降水减少30% No-thinning + 30% precipitation reduction;CKN:未间伐+自然降水 No-thinning + natural precipitation;T45R:45%间伐强度+降水减少30% 45% thinning intensity + 30% precipitation reduction;T45N:45%间伐强度+自然降水 45% thinning intensity+ natural precipitation. 不同小写字母表示同一土层各处理在0.05水平上差异显著(P <0.05)。星号代表显著性差异水平(*P <0.05;**P <0.01;***P <0.001),ns代表差异不显著。The different small letters indicate that the treatments in the same soil layer are significantly different at the 0.05 level (P <0.05). Asterisks indicate the statistical significance (*P <0.05;**P <0.01;***P <0.001), ns means the difference is not significant."
图8
PCA主成分分析图 1–17分别代表pH、水解性氮、全氮、有效磷、全磷、全钾、速效钾、根长密度、根表面积密度、根体积密度、根生物量密度、土壤含水率、土壤密度、土壤孔隙度、田间持水量、根系活力、根系呼吸。1–17 represent pH value, hydrolyzed nitrogen, total nitrogen, available phosphorus, total phosphorus, total potassium, available potassium, root length density, root surface area density, root volume density, root biomass density, soil water content, soil bulk density, soil porosity, field capacity, root vitality, root respiration, respectively. CKR:未间伐+30%降水减少No-thinning + 30% precipitation reduction;CKN:未间伐+自然降水 No-thinning + natural precipitation;T45R:45%间伐强度+30%降水减少45% thinning intensity+ 30% precipitation reduction;T45N:45%间伐强度+自然降水 45% thinning intensity + natural precipitation."
表3
主成分的特征值、贡献率和各因子载荷"
项目Item | 主成分 Main component | ||
1 | 2 | 3 | |
特征值 Eigenvalue | 10.759 | 2.035 | 1.831 |
贡献率 Contribution rate (%) | 63.291 | 11.973 | 10.771 |
累计贡献率 Cumulative contribution rate (%) | 63.291 | 75.264 | 86.035 |
根系活力 Root vitality | 0.943 | 0.122 | –0.016 |
土壤含水率 Soil water content | 0.935 | 0.095 | 0.224 |
水解性氮 Hydrolyzed nitrogen | 0.922 | 0.037 | –0.291 |
全氮 Total nitrogen | 0.920 | –0.068 | –0.267 |
根表面积密度 Root surface area density | 0.916 | 0.302 | 0.096 |
根系呼吸 Root respiration | 0.913 | 0.004 | 0.226 |
根体积密度 Root volume density | 0.879 | 0.282 | 0.306 |
全磷 Total phosphorus | 0.863 | –0.337 | 0.203 |
有效磷 Available phosphorus | 0.850 | –0.046 | –0.257 |
根长密度 Root length density | –0.752 | –0.240 | 0.170 |
根生物量密度 Root biomass density | 0.751 | 0.422 | 0.158 |
田间持水量 Field capacity | 0.734 | 0.004 | 0.551 |
土壤孔隙度 Soil porosity | 0.681 | –0.620 | –0.197 |
土壤密度 Soil bulk density | –0.681 | 0.620 | 0.197 |
全钾 Total potassium | –0.666 | 0.560 | 0.151 |
速效钾 Available potassium | 0.589 | 0.599 | –0.447 |
pH | 0.043 | –0.208 | 0.840 |
表4
不同处理组各土壤深度综合得分"
处理组 Treatments | 土壤深度 Soil depth/cm | 综合得分 Synthesis score | 平均得分 Average scores | 排序 Order | ||
未间伐+30%降水减少 No-thinning + 30% precipitation reduction | 0~20 | –0.880 | –1.060 | –0.520 | –1.92 | 4 |
20~40 | –2.270 | –1.990 | –1.850 | |||
40~60 | –3.010 | –2.770 | –2.930 | |||
未间伐+自然降水 No-thinning + natural precipitation | 0~20 | 1.720 | 1.420 | 1.580 | –0.62 | 3 |
20~40 | –1.200 | –1.090 | –1.350 | |||
40~60 | –2.100 | –2.540 | –2.030 | |||
45%间伐强度+30%降水减少 45% thinning intensity+ 30% precipitation reduction | 0~20 | 2.890 | 2.680 | 2.850 | 1.00 | 2 |
20~40 | 0.500 | 0.700 | 0.460 | |||
40~60 | –0.510 | –0.340 | –0.210 | |||
45%间伐强度+自然降水 45% thinning intensity + natural precipitation | 0~20 | 4.700 | 4.600 | 4.680 | 1.54 | 1 |
20~40 | 0.280 | 0.880 | 1.090 | |||
40~60 | –0.630 | –0.920 | –0.840 |
陈 业. 2022. 干旱和弱光胁迫对亚热带3种造林树种幼苗细根生长和生理特征的影响. 武汉: 华中农业大学. | |
Chen Y. 2022. Effects of drought and low light stress on the growth of fine roots and physiological characteristics of seedlings of three. Wuhan: Huazhong Agricultural University. [in Chinese] | |
郭振宁, 孙世贤, 擅建国, 等. 放牧强度对荒漠草原土壤含水量及群落特征的影响. 中国草地学报, 2022, 44 (6): 27- 35. | |
Guo Z N, Sun S X, Shan J G, et al. Effects of grazing intensity on soil water content and community characteristics in desert steppe. Chinese Journal of Grassland, 2022, 44 (6): 27- 35. | |
李合生. 2000. 植物生理生化实验原理和技术. 北京: 高等教育出版社. | |
Li H S. 2000. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press. [in Chinese] | |
李留彬, 方 文, 马 玲, 等. 间伐措施对松材线虫病疫区马尾松林土壤微生物多样性的影响. 森林工程, 2024, 40 (5): 82- 93.
doi: 10.7525/j.issn.1006-8023.2024.05.009 |
|
Li L B, Fang W, Ma L, et al. Effects of thinning measures on soil microbial diversity of Pinus massoniana forest in pine wilt disease endemic areas. Forest Engineering, 2024, 40 (5): 82- 93.
doi: 10.7525/j.issn.1006-8023.2024.05.009 |
|
李清雪, 贾志清, 何凌仙子, 等. 高寒沙地不同林龄中间锦鸡儿主要养分元素的分配及循环特征. 林业科学研究, 2023, 36 (3): 119- 128.
doi: 10.12403/j.1001-1498.20220528 |
|
Li Q X, Jia Z Q, He L X Z, et al. The allocation and cycling characteristics of main nutrients for Caragana intermedia with different stand age on alpine sandy land. Forest Research, 2023, 36 (3): 119- 128.
doi: 10.12403/j.1001-1498.20220528 |
|
李小方, 张志良. 2016.植物生理学实验指导. 北京: 高等教育出版社. | |
Li X F, Zhang Z L.2016. Experimental supervision of plant physiology. Beijing: Higher Education Press. [in Chinese] | |
刘思琪, 满秀玲, 张 頔, 等. 寒温带4种乔木树种不同径级根系分解及碳氮释放动态. 北京林业大学学报, 2023, 45 (7): 36- 46.
doi: 10.12171/j.1000-1522.20210490 |
|
Liu S Q, Man X L, Zhang D, et al. Dynamics of root decomposition and carbon and nitrogen release of four tree species with different diameter classes in the cold temperate zone. Journal of Beijing Forestry University, 2023, 45 (7): 36- 46.
doi: 10.12171/j.1000-1522.20210490 |
|
刘星霁. 2021. 干旱与氮沉降对内蒙古典型草原土壤特性的影响. 呼和浩特: 内蒙古大学. | |
Liu X J. 2021. Effects of drought and nitrogen deposition on soil properties of typical steppe in Inner Mongollia. Hohhot: Inner Mongolia University. [in Chinese] | |
刘 悦. 2021. 间伐对水曲柳和落叶松混交林细根形态、生物量和根长密度的影响. 哈尔滨: 东北林业大学. | |
Liu Y.2021. Effects of thinning on the morphology, biomass and length density of fine roots in mixed forest of Fraxinus mandshurica and Larix olgensis. Harbin: Northeast Forestry University. [in Chinese] | |
刘紫俊, 秦瑞鑫, 石启玲, 等. 大白菜幼苗对干旱胁迫和复水的响应. 植物生理学报, 2023, 59 (7): 1311- 1320. | |
Liu Z J, Qin R X, Shi Q L, et al. Response of Chinese cabbage seedlings to drought stress and rehydration. Plant Physiology Journal, 2023, 59 (7): 1311- 1320. | |
马常耕, 孙晓梅. 我国落叶松遗传改良现状及发展方向. 世界林业研究, 2008, 21 (3): 58- 63. | |
Ma C G, Sun X M. Larch genetic improvement and its future development in China. World Forestry Research, 2008, 21 (3): 58- 63. | |
寿 烨, 王 兵, 牛 香, 等. 2024. 不同地理种源杉木细根呼吸及其与形态、化学性状的关系研究. 林业科学研究, 37(4): 148−156. | |
Shou Y, Wang B, Niu X, et al. 2024. Fine root respiration and its relationship with morphological and chemical traits of Cunninghamia lanceolata provenances.Forest Research, 37(4): 148−156. [in Chinese] | |
宋 慧, 钟志春, 马利华, 等. 番茄涂膜保鲜效果评价. 徐州工程学院学报(自然科学版), 2020, 35 (2): 11- 16. | |
Song H, Zhong Z C, Ma L H, et al. Evaluation of fresh-keeping effect of coated tomatoes. Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2020, 35 (2): 11- 16. | |
孙玉娟, 钟丽爽, 杨小波, 等. 短期降水减少对海南橡胶林土壤有机碳矿化及有机碳组分的影响. 热带生物学报, 2024, 15 (3): 272- 280. | |
Sun Y J, Zhong L S, Yang X B, et al. Effects of short-term precipitation reduction on soil organic carbon mineralization and organic carbon composition in rubber forest in Hainan. China Industrial Economics, 2024, 15 (3): 272- 280. | |
王宏星. 2023. 间伐和降水减少对日本落叶松人工林土壤多功能性和微生物群落的影响. 北京: 中国林业科学研究院. | |
Wang H X. 2023. Effects of thinning and precipitation reduction on soil multifunctionality and microbial community in a Larix kaempferi plantation. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王宏星, 孙晓梅, 陈东升, 等. 适度间伐对日本落叶松人工林生物多样性和土壤多功能性影响. 林业科学, 2023, 59 (6): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220508 |
|
Wang H X, Sun X M, Chen D S, et al. Effects of moderate thinning on biological diversity and soil multifunctionality in Larix kaempferi plantations. Scientia Silvae Sinicae, 2023, 59 (6): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220508 |
|
王祖华, 李瑞霞, 关庆伟. 间伐对杉木不同根序细根形态、生物量和氮含量的影响. 应用生态学报, 2013, 24 (6): 1487- 1493. | |
Wang Z H, Li R X, Guan Q W. Effects of thinning on fine-root morphology, biomass and N concentration of different branch orders of Chinese fir. Chinese Journal of Applied Ecology, 2013, 24 (6): 1487- 1493. | |
肖若瑜, 阮宏华, 刘晖晖, 等. 2024. 干旱对杨树人工林土壤颗粒有机碳和矿物结合态有机碳的影响. 南京林业大学学报(自然科学版), https://link.cnki.net/urlid/32.1161.s.20240408.1611.008. | |
Xiao R Y, Ruan H H, Liu H H, et al. 2024. Effects of drought on soil particulate organic carbon and mineralassociated organic carbon in poplar plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), https://link.cnki.net/urlid/32.1161.s.20240408.1611.008. [in Chinese] | |
闫春娟, 王文斌, 涂晓杰, 等. 不同生育时期干旱胁迫对大豆根系特性及产量的影响. 大豆科学, 2013, 32 (1): 59- 62, 67.
doi: 10.3969/j.issn.1000-9841.2013.01.014 |
|
Yan C J, Wang W B, Tu X J, et al. Effect of drought stress at different growth stage on yield and root characteristics of soybean. Soybean Science, 2013, 32 (1): 59- 62, 67.
doi: 10.3969/j.issn.1000-9841.2013.01.014 |
|
曾露婧, 王国华. 干旱及复水对荒漠绿洲过渡带一年生草本植物生长及生理特性的影响. 草业学报, 2024, 33 (5): 41- 57.
doi: 10.11686/cyxb2023302 |
|
Zeng L J, Wang G H. Effects of drought stress and rehydration on the growth and physiological characteristics of annual herbaceous plants from a desert-oasis ecotone. Acta Prataculturae Sinica, 2024, 33 (5): 41- 57.
doi: 10.11686/cyxb2023302 |
|
张福锁. 2024. 土壤生态研究与展望. 北京: 龙门书局. | |
Zhang F S. 2024. Research and prospect of soil ecology. Beijing: Longmen Book Company. [in Chinese] | |
张守攻. 2024. 日本落叶松人工林养分与凋落物分解特征研究. 北京: 中国林业出版社. | |
Zhang S G. 2024. Nutrient characteristics and litter decomposition of Larix kaempferi plantation. Beijing: China Forestry Publishing House. [in Chinese] | |
Adams H D, Luce C H, Breshears D D, et al. Ecohydrological consequences of drought- and infestation- triggered tree die-off: insights and hypotheses. Ecohydrology, 2012, 5 (2): 145- 159.
doi: 10.1002/eco.233 |
|
Akburak S, Makineci E. Thinning effects on biomass and element concentrations of roots in adjacent hornbeam and oak stands in Istanbul, Turkey. Forest Ecosystems, 2021, 8, 1.
doi: 10.1186/s40663-020-00279-4 |
|
Allen C D, Breshears D D, McDowell N G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 2015, 6 (8): 1- 55. | |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001 |
|
Atkin O K, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany, 2009, 103 (4): 581- 597.
doi: 10.1093/aob/mcn094 |
|
Bréda N, Granier A, Aussenac G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt. ) Liebl. ). Tree Physiology, 1995, 15 (5): 295- 306.
doi: 10.1093/treephys/15.5.295 |
|
Brooks J R, Mitchell A K. Interpreting tree responses to thinning and fertilization using tree-ring stable isotopes. New Phytologist, 2011, 190 (3): 770- 782.
doi: 10.1111/j.1469-8137.2010.03627.x |
|
Chung C H, Lee S H, Dae C Y, et al. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. Journal of Integrative Agriculture, 2021, 20 (10): 2639- 2651.
doi: 10.1016/S2095-3119(20)63560-2 |
|
Collalti A, Trotta C, Keenan T F, et al. Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. Journal of Advances in Modeling Earth Systems, 2018, 10 (10): 2427- 2452.
doi: 10.1029/2018MS001275 |
|
Doblas-Miranda E, Alonso R, Arnan X, et al. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean region: Beyond drought effects. Global and Planetary Change, 2017, 148, 42- 54.
doi: 10.1016/j.gloplacha.2016.11.012 |
|
Giuggiola A, Bugmann H, Zingg A, et al. Reduction of stand density increases drought resistance in xeric Scots pine forests. Forest Ecology and Management, 2013, 310, 827- 835.
doi: 10.1016/j.foreco.2013.09.030 |
|
Giuggiola A, Ogée J, Rigling A, et al. Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach. New Phytologist, 2016, 210 (1): 108- 121.
doi: 10.1111/nph.13748 |
|
Guasconi D, Manzoni S, Hugelius G. Climate-dependent responses of root and shoot biomass to drought duration and intensity in grasslands–a meta-analysis. Science of the Total Environment, 2023, 903, 166209.
doi: 10.1016/j.scitotenv.2023.166209 |
|
Hanslin H M, Bischoff A, Hovstad K A. Root growth plasticity to drought in seedlings of perennial grasses. Plant and Soil, 2019, 440 (1): 551- 568. | |
Kohler M, Sohn J, Nägele G, et al. Can drought tolerance of Norway spruce (Picea abies (L. ) Karst. ) be increased through thinning? European Journal of Forest Research, 2010, 129 (6): 1109- 1118. | |
Leonova A, Heger A, Vásconez Navas L K, et al. Fine root mortality under severe drought reflects different root distribution of Quercus robur and Ulmus laevis trees in hardwood floodplain forests. Trees, 2022, 36 (3): 1105- 1115.
doi: 10.1007/s00468-022-02275-3 |
|
Liu Y, Zhu Y, Ren L L, et al. Understanding the spatiotemporal links between meteorological and hydrological droughts from a three-dimensional perspective. Journal of Geophysical Research: Atmospheres, 2019, 124 (6): 3090- 3109.
doi: 10.1029/2018JD028947 |
|
McDowell N G, Adams H D, Bailey J D, et al. The role of stand density on growth efficiency, leaf area index, and resin flow in southwestern ponderosa pine forests. Canadian Journal of Forest Research, 2007, 37 (2): 343- 355.
doi: 10.1139/X06-233 |
|
McDowell N G, Allen C D. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 2015, 5 (7): 669- 672.
doi: 10.1038/nclimate2641 |
|
Montagnoli A, Dumroese R K, Terzaghi M, et al. Seasonality of fine root dynamics and activity of root and shoot vascular cambium in a Quercus ilex L. forest (Italy). Forest Ecology and Management, 2019, 431, 26- 34.
doi: 10.1016/j.foreco.2018.06.044 |
|
Mosca E, Di Pierro E A, Budde K B, et al. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species. Molecular Ecology, 2018, 27 (3): 647- 658.
doi: 10.1111/mec.14469 |
|
Navarro F B, Romero-Freire A, Del Castillo T, et al. Effects of thinning on litterfall were found after years in a Pinus halepensis afforestation area at tree and stand levels. Forest Ecology and Management, 2013, 289, 354- 362.
doi: 10.1016/j.foreco.2012.09.026 |
|
Paradiso E, Jevon F, Matthes J. Fine root respiration is more strongly correlated with root traits than tree species identity. Ecosphere, 2019, 10 (11): e02944.
doi: 10.1002/ecs2.2944 |
|
Phillips O L, Aragão L E O C, Lewis S L, et al. Drought sensitivity of the Amazon rainforest. Science, 2009, 323 (5919): 1344- 1347.
doi: 10.1126/science.1164033 |
|
Rodríguez-Calcerrada J, Pérez-Ramos I M, Ourcival J M, et al. 2011. Is selective thinning an adequate practice for adapting Quercus ilex coppices to climate change? Annals of Forest Science, 68(3): 575−585. | |
Sankey T, Tatum J. Thinning increases forest resiliency during unprecedented drought. Scientific Reports, 2022, 12, 9041.
doi: 10.1038/s41598-022-12982-z |
|
Schaedel M S, Larson A J, Affleck D L R, et al. Early forest thinning changes aboveground carbon distribution among pools, but not total amount. Forest Ecology and Management, 2017, 389, 187- 198.
doi: 10.1016/j.foreco.2016.12.018 |
|
Schaeffer S M, Homyak P M, Boot C M, et al. Soil carbon and nitrogen dynamics throughout the summer drought in a California annual grassland. Soil Biology and Biochemistry, 2017, 115, 54- 62.
doi: 10.1016/j.soilbio.2017.08.009 |
|
Vernon M J, Sherriff R L, van Mantgem P, et al. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. Forest Ecology and Management, 2018, 422, 190- 198.
doi: 10.1016/j.foreco.2018.03.043 |
|
Wang H X, Chen D S, Wu C Y, et al. Forest thinning alleviates the negative effects of precipitation reduction on soil microbial diversity and multifunctionality. Biology and Fertility of Soils, 2023a, 59 (4): 423- 440.
doi: 10.1007/s00374-023-01716-6 |
|
Wang J L, Liu H, Hu M J, et al. Effects of decreased precipitation and thinning on soil respiration in a temperate forest: a one-year field experiment in central China. Catena, 2023b, 229, 107239.
doi: 10.1016/j.catena.2023.107239 |
|
Wang Z H, Liu M, Chen F, et al. Variation in fine root traits with thinning intensity in a Chinese fir plantation insights from branching order and functional groups. Scientific Reports, 2021, 11, 22710.
doi: 10.1038/s41598-021-02206-1 |
|
Wasaya A, Zhang X Y, Fang Q, et al. Root phenotyping for drought tolerance: a review. Agronomy, 2018, 8 (11): 241.
doi: 10.3390/agronomy8110241 |
|
Wu G L, Liu Y, Fang N F, et al. Soil physical properties response to grassland conversion from cropland on the semi-arid area. Ecohydrology, 2016, 9 (8): 1471- 1479.
doi: 10.1002/eco.1740 |
|
Zhang Q Y, Shao M G, Jia X X, et al. Changes in soil physical and chemical properties after short drought stress in semi-humid forests. Geoderma, 2019, 338, 170- 177.
doi: 10.1016/j.geoderma.2018.11.051 |
[1] | 周凡博,刘玉民,刘亚敏,代崇雯,高琦,张钰林,朱娅婷. 外源茉莉酸甲酯对红椿苗木干旱损伤的缓解作用及生理机制[J]. 林业科学, 2024, 60(12): 58-71. |
[2] | 王宏星,孙晓梅,陈东升,吴春燕,张守攻. 适度间伐对日本落叶松人工林生物多样性和土壤多功能性影响[J]. 林业科学, 2023, 59(6): 1-11. |
[3] | 崔朝伟,彭丽鸿,马东旭,王佳琪,江祥庆,江先桂,马祥庆,林开敏. 间伐对杉木人工林土壤微生物残体碳的影响[J]. 林业科学, 2023, 59(5): 41-52. |
[4] | 程鑫,吴纯泽,韦庆钰,李伟,卫星. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应[J]. 林业科学, 2023, 59(2): 58-66. |
[5] | 张梦娇,史帅营,刘政安,朱学玲,范昆,史国安. 间伐对'凤丹’牡丹生长、籽粒产量及品质的影响[J]. 林业科学, 2022, 58(1): 162-174. |
[6] | 陈旋,胡颖,孙明升,贾婕,杨章旗. 外源调节物质对铅胁迫下格木幼苗生理特性的影响[J]. 林业科学, 2021, 57(2): 39-48. |
[7] | 祝乐,许晨阳,耿增超,刘莉丽,侯琳,王志康,王强,陈树兰,李倩倩. 秦岭3种天然林细根分布特征及其与土壤理化性质的关系[J]. 林业科学, 2020, 56(2): 24-31. |
[8] | 张晓红,张会儒,卢军,雷相东. 目标树抚育间伐对蒙古栎天然次生林生长的初期影响[J]. 林业科学, 2020, 56(10): 83-92. |
[9] | 叶钰倩, 赵家豪, 刘畅, 关庆伟. 间伐强度对马尾松人工林根际与非根际土壤中性糖特征的影响[J]. 林业科学, 2019, 55(8): 28-35. |
[10] | 王怡霖, 王卫锋, 张芸香, 常淑君, 郭晋平. 碧玉杨叶形态结构与生理特性对干旱的响应[J]. 林业科学, 2019, 55(4): 42-50. |
[11] | 徐雪蕾, 孙玉军, 周华, 张鹏, 胡杨, 王新杰. 间伐强度对杉木人工林林下植被和土壤性质的影响[J]. 林业科学, 2019, 55(3): 1-12. |
[12] | 马迎宾,张蓓蓓,徐庆,高德强,郝玉光,黄雅茹. 绍兴淡水湿地人工林优势树种水分利用策略[J]. 林业科学, 2019, 55(12): 140-150. |
[13] | 姚虹宇, 刘亚敏, 张盛楠, 刘玉民, 周文颖, 王针针. 外源柠檬酸对铝胁迫下马尾松生理特性的影响[J]. 林业科学, 2018, 54(7): 155-164. |
[14] | 冯宜明, 李毅, 曹秀文, 刘锦乾, 齐瑞, 赵阳, 陈学龙. 甘肃南部不同密度云杉人工幼林的林分结构特征及土壤理化性质[J]. 林业科学, 2018, 54(10): 20-30. |
[15] | 王建明, 吴保国, 梁其洋. 基于遗传算法的森林抚育间伐小班智能选择[J]. 林业科学, 2017, 53(9): 63-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||