|
高 鑫, 周 凡, 庄寿增, 等. 纤维饱和点概念的演变、测试方法及其应用. 林业科学, 2019, 55 (3): 149- 159.
doi: 10.11707/j.1001-7488.20190317
|
|
Gao X, Zhou F, Zhuang S Z, et al. Concept evolution, test method and application of fiber saturation point. Scientia Silvae Sinicae, 2019, 55 (3): 149- 159.
doi: 10.11707/j.1001-7488.20190317
|
|
李凯夫. 温度对红松弯曲特性的影响. 东北林业大学学报, 1988, 16 (5): 49- 57.
|
|
Li K F. Effect of temperature on bending characteristic of Pinus koraiensis. Journal of Northeast Forestry University, 1988, 16 (5): 49- 57.
|
|
吕建雄, 林志远, 蒋佳荔, 等. 2006. 不同干燥方法对杉木人工林木材浸注性的影响. 林业科学, 42(10): 85–90.
|
|
Lü J X, Lin Z Y, Jiang J L, et. al. 2006. Effect of different drying methods on the liquid impregnation of Chinese fir plantation wood. Scientia Silvae Sinicae, 42(10): 85–90. [in Chinese]
|
|
舒兴平, 吴 亮, 卢倍嵘, 等. 不锈钢芯板结构芯管平压性能的研究分析. 工业建筑, 2020, 50 (2): 1- 9,23.
|
|
Shu X P, Wu L, Lu B R, et al. Research and analysis of compression properties of core tubes for structure of stainless steel sandwich panel. Industrial Construction, 2020, 50 (2): 1- 9,23.
|
|
汪佑宏, 江泽慧, 费本华, 等. 木材冲击韧性含水率修正模型的研究. 南京林业大学学报(自然科学版), 2009, 33 (3): 92- 94.
|
|
Wang Y H, Jiang Z H, Fei B H, et al. Study on revision model of the wood toughness with moisture content. Journal of Nanjing Forestry University (Natural Sciences Edition), 2009, 33 (3): 92- 94.
|
|
王立海, 王 洋, 高 珊, 等. 冻结状态下应力波在长白落叶松立木中传播速度的研究. 北京林业大学学报, 2009, 31 (3): 96- 99.
doi: 10.3321/j.issn:1000-1522.2009.03.017
|
|
Wang L H, Wang Y, Gao S, et al. Stress wave propagating velocity in Larix olgensis standing trees under a freezing condition. Journal of Beijing Forestry University, 2009, 31 (3): 96- 99.
doi: 10.3321/j.issn:1000-1522.2009.03.017
|
|
王 凌, 高 歌, 张 强, 等. 2008 年 1 月我国大范围低温雨雪冰冻灾害分析 Ⅰ. 气候特征与影响评估. 气象, 2008, 34 (4): 95- 100.
doi: 10.7519/j.issn.1000-0526.2008.04.012
|
|
Wang L, Gao G, Zhang Q, et al. Analysis of the severe cold surge, ice-snow and frozen disasters in south China during January 2008: I. climatic features and its impact. Meteorological Monthly, 2008, 34 (4): 95- 100.
doi: 10.7519/j.issn.1000-0526.2008.04.012
|
|
徐博瀚, 王亚勋, 赵艳华. 木材顺纹断裂韧度的研究进展. 力学与实践, 2016, 38 (5): 493- 500.
doi: 10.6052/1000-0879-15-069
|
|
Xu B H, Wang Y X, Zhao Y H. State-of-the-art of wood fracture toughness along the grain. Mechanics in Engineering, 2016, 38 (5): 493- 500.
doi: 10.6052/1000-0879-15-069
|
|
徐华东, 王立海. 冻结红松和大青杨湿木材内部水分存在状态及含量测定. 林业科学, 2012, 48 (2): 139- 143.
doi: 10.11707/j.1001-7488.20120221
|
|
Xu H D, Wang L H. Determining the states of water and its fraction in frozen Populus ussuriensis and Pinus koraiensis green timbers. Scientia Silvae Sinicae, 2012, 48 (2): 139- 143.
doi: 10.11707/j.1001-7488.20120221
|
|
杨戈尔, 张爱丽, 徐学敏, 等. 2007. 胞内冰晶形成(综述). 工程热物理学报, 28(S2): 55–57.
|
|
Yang G E, Zhang A L, Xu X M, et. al. 2007. Intracellular ice formation (review). Journal of Engineering Thermophysics, 28(S2): 55–57. [in Chinese]
|
|
赵广杰, 则元京, 张跃年. 1991. 相变过程中木材自由水的介电弛豫. 东北林业大学学报, 19(5): 95–100.
|
|
Zhao G J, Norimoto M, Zhang Y N. 1991. Dielectric relaxation of free water in wood during phase transition. Journal of Northeast Forestry University, 19(5): 95–100. [in Chinese]
|
|
Ai M Y, Gao G, Zhao Z W, et al. Experimental study on fracture failure characteristics evaluation of wooden pallets in humid-cold environment based on piezoelectric technology. Industrial Crops and Products, 2024, 222, 119627.
doi: 10.1016/j.indcrop.2024.119627
|
|
Ayrilmis N, Buyuksari U, As N. Bending strength and modulus of elasticity of wood-based panels at cold and moderate temperatures. Cold Regions Science and Technology, 2010, 63 (1/2): 40- 43.
|
|
Cudinov B S, Andreev M D, Stepanov V I, et al. The hygroscopicity of wood at temperatures below 0 deg C. I. Sorption and fiber saturation point. Holztechnologie, 1978, 19 (9): 91- 94.
|
|
Gao S, Tao X M, Wang X P, et al. Theoretical modeling of the effects of temperature and moisture content on the acoustic velocity of Pinus resinosa wood. Journal of Forestry Research, 2018, 29 (2): 541- 548.
doi: 10.1007/s11676-017-0440-5
|
|
Gao S, Wang X P, Wang L H, et al. Effect of temperature on acoustic evaluation of standing trees and logs: Part 2: field investigation. Wood Fiber Sci, 2013, 45 (1): 15- 25.
|
|
Gao S, Wang X P, Wang L H. Modeling temperature effect on dynamic modulus of elasticity of red pine (Pinus resinosa) in frozen and non-frozen states. Holzforschung, 2015, 69 (2): 233- 240.
doi: 10.1515/hf-2014-0048
|
|
Green D W, Evans J W, Logan J D, et al. Adjusting modulus of elasticity of lumber for changes in temperature. Forest Product Journal, 1999, 49 (10): 82- 94.
|
|
Hernández R E, Passarini L, Koubaa A. Effects of temperature and moisture content on selected wood mechanical properties involved in the chipping process. Wood Science and Technology, 2014, 48 (6): 1281- 1301.
doi: 10.1007/s00226-014-0673-9
|
|
Kim J H, Park D H, Lee C S, et al. Effects of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood. Cryogenics, 2015, 72, 90- 102.
|
|
Kim J H, Choi S W, Park D H, et al. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood. Cryogenics, 2018, 91, 36- 46.
doi: 10.1016/j.cryogenics.2018.02.001
|
|
Marini L J, Cavalheiro R S, Almeida De Araujo V, et al. Estimation of mechanical properties in Eucalyptus woods towards physical and anatomical parameters. Construction and Building Materials, 2022, 352, 128824.
doi: 10.1016/j.conbuildmat.2022.128824
|
|
Özkan O E. Effects of cryogenic temperature on some mechanical properties of beech (Fagus orientalis Lipsky) wood. European Journal of Wood and Wood Products, 2021, 79 (2): 417- 421.
doi: 10.1007/s00107-020-01639-1
|
|
Özkan O E. Effect of freezing temperature on impact bending strength and shore-D hardness of some wood species. BioResources, 2022, 17 (4): 6123- 6130.
doi: 10.15376/biores.17.4.6123-6130
|
|
Phuong L X, Shida S, Saito Y. Effects of heat treatment on brittleness of Styrax tonkinensis wood. Journal of Wood Science, 2007, 53 (3): 181- 186.
doi: 10.1007/s10086-006-0841-0
|
|
Ramage M H, Burridge H, Busse-Wicher M, et al. The wood from the trees: the use of timber in construction. Renewable and Sustainable Energy Reviews, 2017, 68, 333- 359.
doi: 10.1016/j.rser.2016.09.107
|
|
Schulson E M. The structure and mechanical behavior of ice. JOM, 1999, 51 (2): 21- 27.
doi: 10.1007/s11837-999-0206-4
|
|
Schulson E M. Brittle failure of ice. Engineering Fracture Mechanics, 2001, 68 (17/18): 1839- 1887.
|
|
Slimani Z, Trabelsi A, Virgone J, et al. Study of the hygrothermal behavior of wood fiber insulation subjected to non-isothermal loading. Applied Sciences, 2019, 9 (11): 2359.
doi: 10.3390/app9112359
|
|
Song X Y, Gao T, Ai M Y, et al. Experimental investigation of freeze injury temperatures in trees and their contributing factors based on electrical impedance spectroscopy. Frontiers in Plant Science, 2024, 15, 1326038.
doi: 10.3389/fpls.2024.1326038
|
|
Wang R S, Haller P. Enhancing wood efficiency through comprehensive wood flow analysis: Methodology and strategic insights. Forest Ecosystems, 2024, 11, 100179.
doi: 10.1016/j.fecs.2024.100179
|
|
Xiao S L, Chen C J, Xia Q Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374 (6566): 465- 471.
doi: 10.1126/science.abg9556
|
|
Yu Z L, Yang N, Zhou L C, et al. Bioinspired polymeric woods. Science Advances, 2018, 4 (8): eaat7223.
doi: 10.1126/sciadv.aat7223
|
|
Zhang L F, Xu B, Fang Z J, et al. Experimental study on the bending and shear behaviors of Chinese Paulownia wood at elevated temperatures. Polymers, 2022, 14 (24): 5545.
doi: 10.3390/polym14245545
|
|
Zhao L Y, Jiang J H, Lu J X, et al. Flexural property of wood in low temperature environment. Cold Regions Science and Technology, 2015, 116, 65- 69.
doi: 10.1016/j.coldregions.2015.04.001
|
|
Zhao L Y, Jiang J H, Lu J X. Effect of thermal expansion at low temperature on mechanical properties of Birch wood. Cold Regions Science and Technology, 2016, 126, 61- 65.
doi: 10.1016/j.coldregions.2016.03.008
|