林业科学 ›› 2024, Vol. 60 ›› Issue (11): 93-106.doi: 10.11707/j.1001-7488.LYKX20230409
李琳1(),陈航1,陈有忠3,朱天辉1,韩珊1,刘韩2,李姝江1
收稿日期:
2023-09-04
出版日期:
2024-11-25
发布日期:
2024-11-30
基金资助:
Lin Li1(),Hang Chen1,Youzhong Chen3,Tianhui Zhu1,Shan Han1,Han Liu2,Shujiang Li1
Received:
2023-09-04
Online:
2024-11-25
Published:
2024-11-30
摘要:
目的: 探究已筛选出的贝莱斯芽孢杆菌(Bacillus velezensis BD2231)和奇异链霉菌(Streptomyces mirabilis BD2233)2株拮抗菌的促生特性及其机制,为杂交竹基腐病防治和植物生长提供有效的微生物菌剂。方法: 采用定性和定量方法,测定BD2231和BD2233在分泌吲哚乙酸(IAA)、溶磷、产铁载体、生物固氮、产ACC脱氨酶和纤维素酶等方面的能力;分析2株菌株对番茄和烟草种子萌发以及对番茄、烟草和杂交竹幼苗生长的影响;利用ELISA试剂盒和实时荧光定量PCR方法,探究菌株对番茄、烟草和杂交竹叶片生长素、赤霉素、水杨酸和茉莉酸的质量浓度及其相关基因表达的影响。结果: BD2231和BD2233均能产生生长素(IAA)、铁载体和纤维素酶,但不具有溶磷、生物固氮和产ACC脱氨酶的能力,其中,BD2233分泌IAA的质量浓度达12.44 mg·L?1,BD2231的载体活性单位(SU)和纤维素酶活性(CMC酶活)分别达26.75%和0.43 U·mL?1。2株菌株可显著促进番茄和烟草种子萌发,经BD2231发酵液处理的番茄和烟草种子发芽率更高,分别为61%和87%。2株菌株可显著促进杂交竹幼苗生长,提高植物的株高、茎粗、鲜质量和干质量。BD2231和BD2233能够显著促进植物叶片内源激素生长素、赤霉素、水杨酸和茉莉酸途径相关基因IAA9、GA20ox、PR-1和MYC2的表达,提高内源激素的质量浓度,BD2233对植物的生长素质量浓度提高效果较好,BD2231对植物的赤霉素、水杨酸和茉莉酸质量浓度提高效果较好。结论: 贝莱斯芽孢杆菌BD2231和奇异链霉菌BD2233通过产生IAA、铁载体和纤维素酶促进植物种子萌发和幼苗生长,且可提高植物生长素、赤霉素、水杨酸和茉莉酸的质量浓度及其相关基因的表达,BD2231在促进植物生长方面表现更好。
中图分类号:
李琳,陈航,陈有忠,朱天辉,韩珊,刘韩,李姝江. 撑绿杂交竹基腐病生防菌的促生机制[J]. 林业科学, 2024, 60(11): 93-106.
Lin Li,Hang Chen,Youzhong Chen,Tianhui Zhu,Shan Han,Han Liu,Shujiang Li. Growth-Promoting Mechanism of Biocontrol Bacteria against Bambusa pervariabilis × Dendrocalamopsis grandis Basal Rot[J]. Scientia Silvae Sinicae, 2024, 60(11): 93-106.
表1
实时荧光定量PCR引物序列"
激素 Hormone | 基因 Gene | 植物 Plant | 引物 Primer | 序列 (5'-3') Prime sequence (5'-3') | 产物长度 Size of product/bp |
IAA | IAA9 | 烟草 Nicotiana tabacum | NIAA-F | GCTTGGTCTTGCTCCTCCTT | 167 |
NIAA-R | AGGCCTCTGCAAAACTACGT | ||||
番茄 Solanum lycopersicum | SIAA-F | ATGGAGCTCCTGGGAAGGA | 134 | ||
SIAA-R | AGCTTACTCCCAGGGGACAT | ||||
杂交竹 Bambusa pervariabilis × Dendrocalamopsis grandis | BDIAA-F | TCGTCCAACACCTTGACGAG | 165 | ||
BDIAA-R | ATCGATGACGCGAACTCGAA | ||||
GA | GA20ox | 烟草 Nicotiana tabacum | NGA-F | AATGAGCCTAGGCGTAGGGA | 178 |
NGA-R | TTGAAGCCCGCCAACACTAT | ||||
番茄 Solanum lycopersicum | SGA-F | TGCAGGCACTATCGAATGGT | 184 | ||
SGA-R | AGAGCAGGCCATGTGAAGTC | ||||
杂交竹 Bambusa pervariabilis × Dendrocalamopsis grandis | BDGA-F | GGCTTCTTCCAGGTCGTGAA | 186 | ||
BDGA-R | CTCTTTCCAGGGGAGCTTGG | ||||
SA | PR-1 | 烟草 Nicotiana tabacum | NSA-F | ACTCCTCAAAATGCAGCTCGT | 165 |
NSA-R | GGCACCACTACCCCAGAAAA | ||||
番茄 Solanum lycopersicum | SSA-F | GCTCCTCAAAATGCAGCTCG | 182 | ||
SSA-R | TGGATTGGCGACCAACCATC | ||||
杂交竹 Bambusa pervariabilis × Dendrocalamopsis grandis | BDSA-F | GAGAACCTCTTCTGGGGCAG | 188 | ||
BDSA-R | CCGTTGTAGCAGGTGACCAT | ||||
JA | MYC2 | 烟草 Nicotiana tabacum | NJA-F | TCCGGGTCAGGCCTTATACA | 152 |
NJA-R | CCAATTCAACCACGCCGTTT | ||||
番茄 Solanum lycopersicum | SJA-F | CTGTTCCTCTGTGTGTCCCCCCC | 164 | ||
SJA-R | CAACAGGGTGCGGTTTTCTG | ||||
杂交竹 Bambusa pervariabilis × Dendrocalamopsis grandis | BDJA-F | CACCACCACACCACGTATCA | 201 | ||
BDJA-R | TAGCTAGGCCCTCCTCGATC | ||||
Actin | 烟草 Nicotiana tabacum | NActin-F | TCTTGACTACGAGCAGGAGC | 156 | |
NActin-R | ATCAGCAATACCAGGGAACA | ||||
番茄 Solanum lycopersicum | SActin-F | AAGAGYTAYGARYTNCCWGATGG | 181 | ||
SActin-R | TTRATCTTCATGCTRCTWGGAGC | ||||
杂交竹 Bambusa pervariabilis × Dendrocalamopsis grandis | BDActin-F | CAGAACGCCCAGGACTTCTT | 183 | ||
BDActin-R | GGTTCTCCGGGGAGCATATG |
图1
生防菌BD2231和BD2233在不同培养基上的促生特性 A:生防菌株产IAA能力定性测定 Qualitative determination of IAA production capacity of biocontrol strains;B:生防菌株在PVK培养基上的菌落图,+表示阳性对照 Colonies of biocontrol strains on PVK medium, +: a positive control;C:生防菌株在CAS检测培养基上的菌落图,?表示阴性对照 Colonies of biocontrol strains on CAS detection medium, ?: a negative control;D:生防菌株在Ashby固体培养基上连续继代3次的菌落图,红圈表示最后一次划线长出的菌落情况 Biocontrol strains on Ashby medium for three consecutive subgenerations of colonies, red circle: indicates the condition of the colony that grew out of the last scratch;E:生防菌株在ADF液体培养基中培养96 h的菌悬液 Colonies of biocontrol strains on cellulase producing identification medium bacterial suspension of biocontrol strains cultured in ADF liquid medium for 96 h."
图2
生防菌处理的种子萌发和幼苗生长情况 A:BD2231、BD2233和CK组番茄种子发芽情况(12天) Germination of tomato seeds in BD2231, BD2233 and CK groups (12 d);B:BD2231、BD2233和CK组烟草种子发芽情况(7天) Germination of tobacco seeds in BD2231, BD2233 and CK groups (7 d);C:BD2231、BD2233和CK组杂交竹幼苗生长情况(30天) Growth of hybrid bamboo seedlings in BD2231, BD2233, and CK groups (30 d);D:BD2231、BD2233和CK组番茄幼苗生长情况(30天) Growth of tomato seedlings in BD2231, BD2233, and CK groups (30 d);E:BD2231、BD2233和CK组烟草幼苗生长情况(30天)Growth of tobacco seedlings in BD2231, BD2233, and CK groups (30 d)."
白 洁, 姚 拓, 王占军, 等. 欧李内生促生菌分离、鉴定及促生、耐盐碱特性. 干旱地区农业研究, 2022a, 40 (1): 132- 138. | |
Bai J, Yao T, Wang Z J, et al. Isolation and identification as well as growth enhancement and saline-alkali tolerance properties of Cerasus humilis plant growth-promoting endophytes. Agricultural Research in the Arid Areas, 2022a, 40 (1): 132- 138. | |
白 洁, 姚 拓, 雷 杨, 等. 2022b. 欧李(Cerasus humilis)内生固氮细菌筛选、鉴定及特性研究. 草地学报, 30(4): 859−866. | |
Bai J, Yao T, Lei Y, et al. 2022b. Screening, identification and characterization of endophytic nitrogen-fixing bacteria in Cerasus humilis. Acta Agrestia Sinica, 30(4): 859−866. [in Chinese] | |
陈佳怡, 徐晶秀, 陈紫茵, 等. 两株根际高效溶磷菌的筛选、鉴定和溶磷特性. 草业科学, 2020, 37 (10): 1979- 1985. | |
Chen J Y, Xu J X, Chen Z Y, et al. Screening, identification, and characteristics of two phosphatesolubilizing bacteria in the rhizosphere. Pratacultural Science, 2020, 37 (10): 1979- 1985. | |
邓 阳, 董伟洁, 朱永明, 等. 枯草芽孢杆菌J-4菌株胞外产抑菌物质性质的初探. 黑龙江畜牧兽医, 2018, (7): 4- 8. | |
Deng Y, Dong W J, Zhu Y M, et al. Preliminary study on properties of extracellular antibacterial substances from Bacillus subtilis strain J-4. Heilongjiang Animal Science and Veterinary Medicine, 2018, (7): 4- 8. | |
邓振山, 李买平, 郝 雷, 等. 陕北地区苹果根际促生菌的筛选及其促生效应. 西北农业学报, 2023, 32 (4): 600- 610. | |
Deng Z S, Li M P, Hao L, et al. Screening of growth-promoting bacteria of apple rhizosphere soil and its growth-promoting effect in northern Shaanxi. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32 (4): 600- 610. | |
费诗萱, 张 敏, 王 迎, 等. 具有ACC脱氨酶活性的红枣根际促生菌株的分离筛选及其促生效果研究. 西北林学院学报, 2019, 34 (6): 140- 146. | |
Fei S X, Zhang M, Wang Y, et al. lsolation, screening and promoting effects of plant growth-promoting rhizobacteria (PGPR) containing ACC deaminase from Jujube. Journal of Northwest Forestry University, 2019, 34 (6): 140- 146. | |
高晓梅, 李 杨, 于 淼, 等. 多功能根际生防促生放线菌的分离鉴定及其对辣椒的益生效果. 农业资源与环境学报, 2023, 40 (4): 906- 916. | |
Gao X M, Li Y, Yu M, et al. Screening, identification, and characterizations of antagonistic actinomycetes strains with plant growth-promoting properties and beneficial effects on pepper. Journal of Agricultural Resources and Environment, 2023, 40 (4): 906- 916. | |
勾宇春, 王宗抗, 张志鹏, 等. 植物根际促生菌作用机制研究进展. 应用与环境生物学报, 2023, 29 (2): 495- 506. | |
Gou Y C, Wang Z K, Zhang Z P, et al. Advance in role mechanisms of plant growth-promoting rhizobacteria. Chinese Journal of Applied & Environmental Biology, 2023, 29 (2): 495- 506. | |
康慎敏, 武瑞赟, 穆文强, 等. 2023. 优良植物根际促生菌的筛选及其生物学特性. 中国农业大学学报, 28(1): 137−152. | |
Kang S M, Wu R Y, Mu W Q, et al. 2023. lsolation and biological characteristics investigation of superior plant growth promoting rhizobacteria. Journal of China Agricultural University, 28(1): 137−152. [in Chinese] | |
李海云, 蒋永梅, 姚 拓, 等. 蔬菜作物根际促生菌分离筛选、鉴定及促生特性测定. 植物保护学报, 2018, 45 (4): 836- 845. | |
Li H Y, Jiang Y M, Yao T, et al. lsolation, screening, identification and growth promoting characteristics of plant growth promoting rhizobacteria of vegetable crops. Journal of Plant Protection, 2018, 45 (4): 836- 845. | |
李扬凡, 邵美琪, 刘 畅, 等. 解淀粉芽孢杆菌HMB33604的抑菌物质及对马铃薯黑痣病的防治效果. 中国农业科学, 2021, 54 (12): 2559- 2569. | |
Li Y F, Shao M Q, Liu C, et al. Identification of the antifungal active compounds from Bacillus amyloliquefaciens strain HMB33604 and its control efficacy against potato black scurf. Scientia Agricultura Sinica, 2021, 54 (12): 2559- 2569. | |
李永赟, 曾宗梁, 杨军伟, 等. 烤烟根际烟碱降解细菌的多样性及其促生特性分析. 微生物学通报, 2021, 48 (10): 3632- 3641. | |
Li Y Y, Zeng Z L, Yang J W, et al. Analysis on the diversity and plant growth-promoting characteristics of bacteria in rhizosphere of flue-cured tobacco. Microbiology China, 2021, 48 (10): 3632- 3641. | |
李争明, 张 娟, 邓中洋, 等. 纤维素酶产生菌的筛选、鉴定及发酵产酶条件优化. 生物技术通报, 2015, 31 (5): 146- 152. | |
Li Z M, Zhang J, Deng Z Y, et al. Screening, identification and optimization of cellulaseproducing strains. Biotechnology Bulletin, 2015, 31 (5): 146- 152. | |
刘惠英, 朱志强, 陈嘉敏, 等. 凤梨内生菌筛选鉴定及拮抗效果评价. 湖北大学学报(自然科学版), 2020, 42 (2): 158- 164. | |
Liu H Y, Zhu Z Q, Chen J M, et al. Screening and identification of endophytes from pineapple and the evaluation of antagonistic effects. Journal of Hubei University (Natural Science), 2020, 42 (2): 158- 164. | |
刘丽辉, 彭桂香, 黄淑芬, 等. 落地生根内生固氮菌多样性和促生特性. 微生物学通报, 2019, 46 (10): 2538- 2547. | |
Liu L H, Peng G X, Huang S F, et al. Diversity and growth promotion of endophytic diazotrophic bacteria isolated from Bryophyllum pinnatum. Microbiology China, 2019, 46 (10): 2538- 2547. | |
刘雪娇, 李红亚, 李术娜, 等. 贝莱斯芽孢杆菌3A3-15生防和促生机制. 河北大学学报(自然科学版), 2019, 39 (3): 302- 310. | |
Liu X J, Li H Y, Li S N, et al. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15. Journal of Hebei University (Natural Science Edition), 2019, 39 (3): 302- 310. | |
刘玉珍, 邓振山, 高 飞, 等. 一株巨菌草内生细菌的鉴定及其促生特性初步分析. 广东农业科学, 2018, 45 (3): 88- 93. | |
Liu Y Z, Deng Z S, Gao F, et al. Identification of an endophytic bacteria from Pennisetum sp. and the preliminary analysis of its growth promoting properties. Guangdong Agricultural Sciences, 2018, 45 (3): 88- 93. | |
麻 爽. 2016. 盐碱化羊草草地固氮微生物的特性研究. 长春: 东北师范大学. | |
Ma S. 2016. Research on characteristics of nitrogen-fixing microorganisms in Alkali-Saline Grassland soil. Changchun: Northeast Normal University. [in Chinese] | |
孟建宇, 李 蘅, 杨鸿儒, 等. 内蒙古荒漠灌木根际解磷菌多样性及其解磷和产铁载体能力. 环境科学研究, 2021, 34 (11): 2714- 2721. | |
Meng J Y, Li H, Yang H R, et al. Diversity of phosphorus-solubilizing bacteria in rhizosphere of desert shrubs in inner mongolia and their phosphorus-solubilizing and siderophore-producing capabilities. Research of Environmental Sciences, 2021, 34 (11): 2714- 2721. | |
王 平, 董 飚, 李阜棣, 等. 小麦根圈细菌铁载体的检测. 微生物学通报, 1994, 21 (6): 323- 326. | |
Wang P, Dong B, Li F D, et al. Detection and determination of the siderophores produced by wheat rhizobacteria. Microbiology China, 1994, 21 (6): 323- 326. | |
王 舒, 张林平, 郝菲菲, 等. 油茶根际高效溶磷细菌的筛选、鉴定及其安全性测试. 林业科学研究, 2015, 28 (2): 166- 172. | |
Wang S, Zhang L P, Hao F F, et al. Screening, identification and security test of Camellia oleifera rhizosphere phosphate-solubilizing bacteria. Forest Research, 2015, 28 (2): 166- 172. | |
王惟帅, 杨世琦, 杨正礼. 新造地马铃薯根际固氮解磷微生物的分离与鉴定. 西北农林科技大学学报(自然科学版), 2019, 47 (8): 127- 133. | |
Wang W S, Yang S Q, Yang Z L. Isolation and characterization of nitrogen fixing and phosphate solubilizing bacteria from potato rhizosphere of reclaimed cropland. Journal of Northwest A & F University (Natural Science Edition), 2019, 47 (8): 127- 133. | |
薛应钰, 叶 巍, 杨 树, 等. 一株溶磷菌的分离鉴定及溶磷促生作用. 干旱地区农业研究, 2019, 37 (4): 253- 262. | |
Xue Y Y, Ye W, Yang S, et al. Isolation and identification of P-dissolving fungi strain and its effects on phosphate-solubilizing and plant growth promotion. Agricultural Research in the Arid Areas, 2019, 37 (4): 253- 262. | |
杨东亚, 祁瑞雪, 李昭轩, 等. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果. 生物技术通报, 2023, 39 (2): 211- 220. | |
Yang D Y, Qi R X, Li Z X, et al. Screening, identification and growth-promoting effect of antagonistic Bacillus spp. against cucumber Fusarium solani. Biotechnology Bulletin, 2023, 39 (2): 211- 220. | |
杨 华, 胡 展, 郭照辉, 等. 水稻促生菌的筛选、鉴定及其促生效果. 微生物学通报, 2022, 49 (6): 2088- 2099. | |
Yang H, Hu Z, Guo Z H, et al. Screening and identification of rice growth-promoting strains and their effects on rice growth. Microbiology China, 2022, 49 (6): 2088- 2099. | |
曾婉琳. 2020. 防控烟草青枯病的植物免疫诱抗剂筛选及其抗病机理研究. 广州: 华南农业大学. | |
Zeng W L. 2020. Screening and resistance mechanism of plant immune inducers to tobacco bacterial Wilt, caused by Ralstonia solanacearum. GuangZhou: South China Agricultural University. [in Chinese] | |
张国壮, 李海超, 孙永林, 等. 5株产Acc脱氨酶细菌的筛选与鉴定. 西北农林科技大学学报(自然科学版), 2014, 42 (6): 189- 196. | |
Zhang G Z, Li H C, Sun Y L, et al. Isolation and identification of rhizobacteria producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Journal of Northwest A & F University (Natural Science Edition), 2014, 42 (6): 189- 196. | |
张文韬, 杨 皓, 毛国豪, 等. 一株高地芽孢杆菌的鉴定与促生能力研究. 江苏农业科学, 2022, 50 (5): 225- 229. | |
Zhang W T, Yang H, Mao G H, et al. Identification and growth promoting ability of a strain of Bacillus altitudinis. Jiangsu Agricultural Sciences, 2022, 50 (5): 225- 229. | |
张祥胜. 钼锑抗比色法测定磷细菌发酵液中有效磷含量测定值的影响因素分析. 安徽农业科学, 2008, 36 (12): 4822- 4823. | |
Zhang X S. Analysis of the factors affecting the available P content in the fermentation liquid of P bacteria determined by Mo-Sb colorimetry. Journal of Anhui Agricultural Sciences, 2008, 36 (12): 4822- 4823. | |
张玉丹, 谭 琳, 任佐华, 等. 茶炭疽病拮抗链霉菌的筛选鉴定与拮抗能力测定. 中国生物防治学报, 2023, 39 (3): 646- 656. | |
Zhang Y D, Tan L, Ren Z H, et al. Screening, identification and determination of antagonistic Actinomycetes strain against tea anthracnose. Chinese Journal of Biological Control, 2023, 39 (3): 646- 656. | |
周益帆, 白寅霜, 岳 童, 等. 植物根际促生菌促生特性研究进展. 微生物学通报, 2023, 50 (2): 644- 666. | |
Zhou Y F, Bai Y S, Yue T, et al. Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria. Microbiology China, 2023, 50 (2): 644- 666. | |
朱天才, 周洁尘, 段 翔, 等. 花榈木根际促生菌的筛选鉴定及促生特性. 中南林业科技大学学报, 2023, 43 (1): 43- 49. | |
Zhu T C, Zhou J C, Duan X, et al. Screening and identification of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Ormosia henryi and their growth-promoting characteristics. Journal of Central South University of Forestry & Technology, 2023, 43 (1): 43- 49. | |
Ambreetha S, Chinnadurai C, Marimuthu P, et al. Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere, 2018, 5 (5): 57- 66. | |
Barazani O, Friedman J. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? Journal of Chemical Ecology, 25(10): 2397-2406. | |
García-Hurtado N, Esther C, Ruiz-Rivero O, et al. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 2012, 63 (16): 5803- 5813.
doi: 10.1093/jxb/ers229 |
|
He Y X, Guo W Y, Peng J L, et al. Volatile organic compounds of Streptomyces sp. TOR3209 stimulated tobacco growth by up-regulating the expression of genes related to plant growth and development. Frontiers in Microbiology, 2022, 13, 891245.
doi: 10.3389/fmicb.2022.891245 |
|
Kang S M, Khan A, Hamayun M, et al. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. Journal of Microbiology, 2012, 50 (6): 902- 909.
doi: 10.1007/s12275-012-2273-4 |
|
Kurepin L V, Park J M, Lazarovits G, et al. Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regulation, 2015, 75 (1): 199- 207.
doi: 10.1007/s10725-014-9944-6 |
|
Li F, Zhang H Z, Wang S X, et al. Identification of topping responsive proteins in tobacco roots. Frontiers in Plant Science, 2016, 7 (4): 582. | |
Li L, Guan M M, Liu H, et al. First report of Fusarium proliferatum associated with basal rot disease of Bambusa pervariabilis × Dendrocalamopsis grandis in China. Plant Disease, 2022, 106 (9): 2531. | |
Li Z Y, Li J J, Yu M, et al. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants. Plos One, 2023, 18 (6): e286971. | |
Lin T T, Li L, Gu X M, et al. Seasonal variations in the composition and diversity of rhizosphere soil microbiome of bamboo plants as infected by soil-borne pathogen and screening of associated antagonistic strains. Industrial Crops and Products, 2023, 197, 116641.
doi: 10.1016/j.indcrop.2023.116641 |
|
Liu F C, Ma H L, Liu B H, et al. Effects of plant growth-promoting rhizobacteria on the physioecological characteristics and growth of walnut seedlings under drought stress. Agronomy-Basel, 2023, 13 (2): 290.
doi: 10.3390/agronomy13020290 |
|
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262 |
|
Luo F Y, Yan P, Xie L L, et al. Molecular mechanisms of phenylpropane-synthesis-related genes regulating the shoot blight resistance of Bambusa pervariabilis × Dendrocalamopsis grandis. International Journal of Molecular Sciences, 2022, 23 (12): 6760.
doi: 10.3390/ijms23126760 |
|
Rizwana B S N, Raheem S, Rupesh T, et al. Evaluation potential of PGPR to protect tomato against Fusarium wilt and promote plant growth. Peerj, 2021, 9, e11194.
doi: 10.7717/peerj.11194 |
|
Song C, Cao Y P, Dai J, et al. The multifaceted roles of MYC2 in plants: toward transcriptional reprogramming and stress tolerance by jasmonate signaling. Frontiers in Plant Science, 2022, 13, 868874.
doi: 10.3389/fpls.2022.868874 |
|
Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160 (1): 47- 56.
doi: 10.1016/0003-2697(87)90612-9 |
|
Tunsagool P, Jutidamrongphan W, Phaonakrop N, et al. Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. Plant Cell Reports, 2019, 38 (5): 559- 575.
doi: 10.1007/s00299-019-02386-1 |
|
Yan Y C, Xu W H, Hu Y L, et al. Bacillus velezensis YYC promotes tomato growth and induces resistance against bacterial wilt. Biological Control, 2022, 172, 104977.
doi: 10.1016/j.biocontrol.2022.104977 |
|
Zhang J, Liu J Y, Meng L Y, et al. 2012. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. Journal of Microbiology (Seoul, Korea), 50(2): 191−198. | |
Zhou J M, Trifa Y, Silva H, et al. 2000. Npr1 differentially interacts with members of the Tga/Obf family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molecular plant-microbe interactions : MPMI, 13(2): 191−202. | |
Zubair M, Hanif A, Farzand A, et al. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms, 2019, 7 (9): 337.
doi: 10.3390/microorganisms7090337 |
[1] | 张丽娜, 朱天辉, 彭艳, 郑磊, 赵芳. 抗菌蛋白AMP对杂交竹梢枯病防治效果及其抗性相关酶活性的影响[J]. 林业科学, 2014, 50(11): 82-89. |
[2] | 李姝江;朱天辉;. 杂交竹梢枯病菌毒素蛋白纯化及致病力[J]. 林业科学, 2012, 48(11): 144-149. |
[3] | 闫绍鹏;杨瑞华;关录凡;王秋玉. 转基因与非转基因杂种山杨组培苗内源激素的比较[J]. 林业科学, 2010, 46(9): 40-44. |
[4] | 卢江杰 吉永胜彦 方伟 汤定钦. 3种竹类植物杂种的分子鉴定[J]. 林业科学, 2009, 12(3): 29-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||