|
陈志成, 陆海波, 刘晓静, 等. 宝天曼三桠乌药对降雨减少后的生理生态响应. 林业科学研究, 2017, 30 (3): 430- 435.
|
|
Chen Z C, Lu H B, Liu X J, et al. Ecophysiological responses of Lindera obtusiloba to rainfall reduction in Baotianman nature reserve. Forest Research, 2017, 30 (3): 430- 435.
|
|
刘 尧, 于 馨, 于 洋, 等. R程序包“rdacca. hp”在生态学数据分析中的应用: 案例与进展. 植物生态学报, 2023, 47 (1): 134- 144.
doi: 10.17521/cjpe.2022.0314
|
|
Liu Y, Yu X, Yu Y, et al. Application of "rdacca. hp” R package in ecological data analysis: case and progress. Chinese Journal of Plant Ecology, 2023, 47 (1): 134- 144.
doi: 10.17521/cjpe.2022.0314
|
|
曾凡江, 李向义, 张希明, 等. 2010. 极端干旱条件下多年生植物水分关系参数变化特性. 生态学杂志, 29(2): 207–214.
|
|
Zeng F J, Li X Y, Zhang X M , et al. 2010. Variation characteristics of perennial plant species water relation parameters under extreme arid condition. Chinese Journal of Ecology, 29(2): 207–214. [in Chinese]
|
|
Arenas-Navarro M, Oyama K, García-Oliva F, et al. The role of wood anatomical traits in the coexistence of oak species along an environmental gradient. AoB Plants, 2021, 13 (6): plab066.
doi: 10.1093/aobpla/plab066
|
|
Bartlett M K, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 2012, 15 (5): 393- 405.
doi: 10.1111/j.1461-0248.2012.01751.x
|
|
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12 (4): 351- 366.
doi: 10.1111/j.1461-0248.2009.01285.x
|
|
Chen Z C, Liu S R, Lu H B, et al. Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species. AoB Plants, 2019, 11 (5): plz058.
doi: 10.1093/aobpla/plz058
|
|
Chen Z C, Zhang Y T, Yuan W J. et al. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric–anisohydric spectrum. Tree Physiology, 2021, 41 (9): 1601- 1610.
doi: 10.1093/treephys/tpab028
|
|
Chen Z C, Zhu S D, Zhang Y T, et al. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology, 2020, 40 (8): 1029- 1042.
doi: 10.1093/treephys/tpaa046
|
|
Gartner B L, Moore J R, Gardiner B A. Gas in stems: abundance and potential consequences for tree biomechanics. Tree Physiology, 2004, 24 (11): 1239- 1250.
doi: 10.1093/treephys/24.11.1239
|
|
Lai J S, Zou Y, Zhang J L, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp Rpackage. Methods in Ecology and Evolution, 2022, 13 (4): 782- 788.
doi: 10.1111/2041-210X.13800
|
|
Liu C C, Sack L, Li Y, et al. Relationships of stomatal morphology to the environment across plant communities. Nature Communications, 2023, 14, 6629.
doi: 10.1038/s41467-023-42136-2
|
|
Martínez-Cabrera H I, Jones C S, Espino S, et al. Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany, 2009, 96 (8): 1388- 1398.
doi: 10.3732/ajb.0800237
|
|
Morris H, Plavcová L, Cvecko P, et al. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 2016, 209 (4): 1553- 1565.
doi: 10.1111/nph.13737
|
|
Poorter L, McDonald I, Alarcón A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 2010, 185 (2): 481- 492.
doi: 10.1111/j.1469-8137.2009.03092.x
|
|
Pratt R B, Jacobsen A L, Ewers F W, et al. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 2007, 174 (4): 787- 798.
doi: 10.1111/j.1469-8137.2007.02061.x
|
|
Preston K A, Cornwell W K, DeNoyer J L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 2006, 170 (4): 807- 818.
doi: 10.1111/j.1469-8137.2006.01712.x
|
|
Santiago L S, De Guzman M E, Baraloto C, et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 2018, 218 (3): 1015- 1024.
doi: 10.1111/nph.15058
|
|
Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
|
|
Veech J A. A probabilistic model for analysing species co‐occurrence. Global Ecology and Biogeography, 2013, 22 (2): 252- 260.
doi: 10.1111/j.1466-8238.2012.00789.x
|
|
Wang Y Q, Ni M Y, Zeng W H, et al. Co-ordination between leaf biomechanical resistance and hydraulic safety across 30 sub-tropical woody species. Annals of Botany, 2021, 128 (2): 183- 191.
doi: 10.1093/aob/mcab055
|
|
Wheeler J K, Sperry J S, Hacke U G, et al. 2005. Inter‐vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade‐off in xylem transport. Plant, Cell and Environment, 28(6): 800−812.
|
|
Wright I J, Ackerly D D, Bongers F, et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 2007, 99 (5): 1003- 1015.
doi: 10.1093/aob/mcl066
|
|
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428, 821- 827.
doi: 10.1038/nature02403
|
|
Zheng J M, Martínez-Cabrera H I. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 2013, 112 (5): 927- 935.
doi: 10.1093/aob/mct153
|
|
Ziemińska K, Butler D W, Gleason S M, et al. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants, 2013, 5, plt046.
|