林业科学 ›› 2022, Vol. 58 ›› Issue (2): 1-12.doi: 10.11707/j.1001-7488.20220201
齐建东1,2,谭新新1
收稿日期:
2021-05-08
出版日期:
2022-02-25
发布日期:
2022-04-26
基金资助:
Jiandong Qi1,2,Xinxin Tan1
Received:
2021-05-08
Online:
2022-02-25
Published:
2022-04-26
摘要:
目的: 分析长白山红松阔叶林净生态系统碳交换量(NEE)的季节性差异及其气象因子响应, 在月尺度下揭示气象因子对NEE的动态影响, 为调节研究地区的碳收支提供理论指导。同时研究时间卷积神经网络在森林生态系统净碳交换模拟中的应用, 探索NEE模拟的新方法。方法: 基于长白山温带红松阔叶林通量观测站2007—2010年间的30 min观测数据, 分析NEE和输入模型的5种气象因子的季节性差异, 并分析5种气象因子与NEE的相关性。使用随机森林模型, 计算影响NEE的各因子重要性得分, 选择得分较高的5种气象因子: 潜热通量、显热通量、冠层上方空气湿度、冠层上方水汽压和净辐射作为NEE模拟的输入; 分别构建基于时间卷积神经网络(TCN)、长短期记忆网络(LSTM)、人工神经网络(ANN)、支持向量回归(SVR)和极限学习机(ELM)的5种NEE模型, 采用决定系数(R2)、平均绝对误差(MAE)和均方根误差(RMSE)评价模型的预测精度和稳定性。结果: 长白山温带红松阔叶林通量观测站NEE全年总量为-74.777 3 gCO2·m-2a-1, 总体表现为碳汇, 但夏季表现为碳汇, 冬季表现为碳源; NEE与潜热通量、冠层上方水汽压、净辐射和冠层上方空气湿度均极显著负相关(P < 0.000 1), 和显热通量相关性不显著; TCN模型的RMSE为0.110 5 mgCO2·m-2s-1, R2为0.821 4, RMSE分别比ELM、SVR、ANN和LSTM减少0.024 8、0.022 4、0.022 2和0.006 8 mgCO2·m-2s-1, R2分别比ELM、SVR、ANN和LSTM增加0.080 6、0.077 7、0.068 6、0.022 3; 根据5种模型的10次试验结果, 计算得到TCN模型RMSE的标准差为0.000 4 mgCO2·m-2s-1, 相比ELM、ANN和LSTM分别减小0.001 4、0.001 3和0.000 2 mgCO2·m-2s-1。结论: 长白山温带红松阔叶林通量观测站的NEE总体表现为碳汇, 但存在明显的季节差异; NEE与潜热通量、冠层上方水汽压、冠层上方空气湿度、净辐射极显著负相关(P < 0.000 1), 与显热通量相关性不显著。对于长白山温带红松阔叶林通量观测站的长期NEE预测结果表明, 基于TCN的模型不仅预测精度良好, 并且具有较强的稳定性, 能为时间卷积神经网络在生态模拟领域的应用提供可行性依据。本研究结果可为调节长白山红松阔叶林的碳收支提供理论指导。
中图分类号:
齐建东,谭新新. 长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟[J]. 林业科学, 2022, 58(2): 1-12.
Jiandong Qi,Xinxin Tan. Net Carbon Exchange of the Forest of Korean Pine and Broad Leaved Forest Trees in Changbai Mountain and Its Simulation Based on Temporal Convolutional Network[J]. Scientia Silvae Sinicae, 2022, 58(2): 1-12.
表1
不同气象因子与NEE的相关性分析结果"
气象因子Meteorological factors | 相关系数Correlation coefficient | P |
潜热通量Latent heat flux | -0.794 9 | < 0.000 1 |
显热通量Sensible heat flux | 0.077 0 | 0.141 8 |
净辐射Net radiation | -0.547 7 | < 0.000 1 |
冠层上方空气湿度Moisture in the air above the canopy | -0.407 0 | < 0.000 1 |
冠层上方水汽压Vapor pressure above the canopy | -0.718 9 | < 0.000 1 |
表2
不同模型评价指标"
训练集Training | 测试集Testing | ||||||
RMSE/ (mgCO2·m-2s-1) | MAE/ (mgCO2·m-2s-1) | R2 | RMSE/ (mgCO2·m-2s-1) | MAE/ (mgCO2·m-2s-1) | R2 | ||
TCN | 0.112 6 | 0.054 9 | 0.840 5 | 0.110 5 | 0.051 1 | 0.821 4 | |
LSTM | 0.117 7 | 0.059 9 | 0.824 0 | 0.117 3 | 0.059 1 | 0.799 1 | |
ANN | 0.119 3 | 0.068 3 | 0.820 4 | 0.132 7 | 0.074 4 | 0.752 8 | |
SVR | 0.120 4 | 0.075 72 | 0.817 6 | 0.132 9 | 0.081 1 | 0.743 7 | |
ELM | 0.121 9 | 0.071 1 | 0.811 2 | 0.135 3 | 0.073 8 | 0.740 8 |
陈强, 吴慕春, 薛月菊, 等. 支持向量机回归的碳通量预测. 计算机工程与应用, 2009, 45 (21): 235- 238.
doi: 10.3778/j.issn.1002-8331.2009.21.068 |
|
Chen Q , Wu M C , Xue Y J , et al. Research of predicting methods for carbon flux based on support vector regression. Computer Engineering and Applications, 2009, 45 (21): 235- 238.
doi: 10.3778/j.issn.1002-8331.2009.21.068 |
|
窦兆一, 刘建军. 人工神经网络在通量观测资料插补中的应用. 西北林学院学报, 2009, 24 (3): 58- 62. | |
Dou Z Y , Liu J J . Application of artificial neural networks to interpolation and extrapolation of flux data. Journal of Northwest Forestry University, 2009, 24 (3): 58- 62. | |
龚元, 郭智娟, 张凯迪, 等. 植被对亚热带城市生态系统CO2通量的影响. 生态学报, 2019, 39 (2): 530- 541. | |
Gong Y , Guo Z J , Zhang K D , et al. Impact of vegetation on CO2 flux of a subtropical urban ecosystem. Acta Ecologica Sinica, 2019, 39 (2): 530- 541. | |
纪小芳, 鲁建兵, 杨军, 等. 凤阳山针阔混交林碳通量变化特征及其影响因子. 东北林业大学学报, 2019, 47 (3): 49- 55. | |
Ji X F , Lu J B , Yang J , et al. Carbon flux variation characteristics and its influencing factors in coniferous and broad-leaved mixed forest in Fengyang Mountain. Journal Of Northeast Forestry University, 2019, 47 (3): 49- 55. | |
李琪, 王云龙, 胡正华, 等. 基于涡度相关法的中国草地生态系统碳通量研究进展. 草业科学, 2010, 27 (12): 38- 44.
doi: 10.3969/j.issn.1001-0629.2010.12.007 |
|
Li Q , Wang Y L , Hu Z H , et al. Research progress on carbon flux of grassland ecosystem based on the eddy covariance method in China. Pratacultural Science, 2010, 27 (12): 38- 44.
doi: 10.3969/j.issn.1001-0629.2010.12.007 |
|
李润东, 范雅倩, 冯沛, 等. 北京松山天然落叶阔叶林生态系统净碳交换特征及其影响因子. 应用生态学报, 2020, 31 (11): 3621- 3630. | |
Li R D , Fan Y Q , Feng P , et al. Net ecosystem carbon exchange and its affecting factors in a deciduous broad-leaved forest in Songshan, Beijing, China. Chinese Journal of Applied Ecology, 2020, 31 (11): 3621- 3630. | |
李威, 黄玫, 张远东, 等. 中国国家森林公园碳储量及固碳速率的时空动态. 应用生态学报, 2021, 32 (3): 799- 809. | |
Li W , Huang M , Zhang Y D , et al. Spatial-temporal variations of carbon storage and carbon sequestration rate in China's national forest parks. Chinese Journal of Applied Ecology, 2021, 32 (3): 799- 809. | |
李轶涛, 余新晓. 北京西山典型侧柏人工林热量平衡研究. 应用基础与工程科学学报, 2013, 21 (4): 600- 607.
doi: 10.3969/j.issn.1005-0930.2013.04.002 |
|
Li Y T , Yu X X . Research of the heat balance in a typical Platycladus orientalis plantation in the west mountain area of Beijing. Journal of Basic Science and Engineering, 2013, 21 (4): 600- 607.
doi: 10.3969/j.issn.1005-0930.2013.04.002 |
|
马小红, 冯起, 苏永红, 等. 胡杨林净生态系统CO2交换特征. 干旱区资源与环境, 2017, 31 (9): 108- 115. | |
Ma X H , Feng Q , Su Y H , et al. Diurnal and seasonal variations in net ecosystem CO2 exchange of a desert riparian Populus Euphratica forest. Journal of Arid Land Resources and Environment, 2017, 31 (9): 108- 115. | |
农业大词典编辑委员会. 农业大词典. 北京: 中国农业出版社, 1998. | |
Dictionary Editorial Committee of Agriculture . Dictionary of agriculture. Beijing: China Agriculture Press, 1998. | |
齐建东, 黄金泽, 贾昕. 基于XGBoost-ANN的城市绿地净碳交换模拟与特征响应. 农业机械学报, 2019, 50 (5): 10. | |
Qi J D , Huang J Z , Jia X . Simulation of NEE and characterization of urban green-land ecosystem responses to climatic controls based on XGBoost-ANN. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50 (5): 10. | |
齐建东, 黄俊尧. 基于深度学习的草地生态系统净碳交换模拟. 农业机械学报, 2020, 51 (6): 152- 161. | |
Qi J D , Huang J Y . Simulation of NEE in grassland ecosystems based on deep learning. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (6): 152- 161. | |
石旭霞, 侯继华, 王冰雪, 等. 长白山阔叶红松林生态系统生产力与温度的关系. 北京林业大学学报, 2018, 40 (11): 49- 57. | |
Shi X X , Hou J H , Wang B X , et al. Relationship between primary productivity and temperature in broadleaved Pinus koraiensis mixed forest in Changbai Mountains of northeastern China. Journal of Beijing Forestry University, 2018, 40 (11): 49- 57. | |
宋春林, 孙向阳, 王根绪. 森林生态系统碳水关系及其影响因子研究进展. 应用生态学报, 2015, 26 (9): 2891- 2902. | |
Song C L , Sun X Y , Wang G X . A review on carbon and water interactions of forest ecosystem and its impact factors. Chinese Journal of Applied Ecology, 2015, 26 (9): 2891- 2902. | |
谭丽萍, 刘苏峡, 莫兴国, 等. 华北人工林水热碳通量环境影响因子分析. 植物生态学报, 2015, 39 (8): 773- 784. | |
Tan L P , Liu S X , Mo X G , et al. Environmental controls over energy, water and carbon fluxes in a plantation in northern China. Chinese Journal of Plant Ecology, 2015, 39 (8): 773- 784. | |
王楷, 薛月菊, 陈汉鸣, 等. 改进的自适应脊波网络的碳通量预测. 计算机工程与应用, 2014, 50 (3): 242- 246.
doi: 10.3778/j.issn.1002-8331.1203-0505 |
|
Wang K , Xue Y J , Chen H M , et al. Modified adaptive ridgelet network and its application in prediction of carbon flux. Computer Engineering and Applications, 2014, 50 (3): 242- 246.
doi: 10.3778/j.issn.1002-8331.1203-0505 |
|
王秋凤, 牛栋, 于贵瑞, 等. 长白山森林生态系统CO2和水热通量的模拟研究. 中国科学: 地球科学, 2004, 34 (S2): 131- 140. | |
Wang Q F , Niu D , Yu G R , et al. Simulation of CO2 and water and heat fluxes in the forest ecosystem of Changbai Mountain. Scientia Sinica(Terrae), 2004, 34 (S2): 131- 140. | |
汪雪, 周国模, 周健, 等. 基于贝叶斯改进的人工神经网络毛竹林碳通量估算. 西北林学院学报, 2017, 32 (1): 203- 209.
doi: 10.3969/j.issn.1001-7461.2017.01.32 |
|
Wang X , Zhou G M , Zhou J , et al. Estimation of Phyllostachys heterocycla cv. pubescens carbon flux based on artificial networks improved by bayesian. Journal of Northwest Forestry University, 2017, 32 (1): 203- 209.
doi: 10.3969/j.issn.1001-7461.2017.01.32 |
|
温旭丁. 2014. ANN模型在亚热带杉木林CO2通量研究中的应用. 长沙: 中南林业科技大学. | |
Wen X D. 2014. Applying an artificial neural network to simulate and predict Chinese fir plantation carbon flux in subtropical China. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
徐勇峰, 季淮, 韩建刚, 等. 洪泽湖湿地杨树林生长季碳通量变化特征及其影响因子. 生态学杂志, 2018, 37 (2): 322- 331. | |
Xu Y F , Ji H , Han J G , et al. Variation of net ecosystem carbon flux in growing season and its driving factors in a poplar plantation from Hung-tse Lake wetland. Chinese Journal of Ecology, 2018, 37 (2): 322- 331. | |
薛建辉. 森林生态学. 北京: 中国林业出版社, 2006. | |
Xue J H . Forest ecology. Beijing: China Forestry Publishing House, 2006. | |
薛月菊, 刘曙光, 胡月明, 等. 基于GA-NN的碳通量预测因素选择. 计算机工程与应用, 2011, 47 (18): 237- 240. | |
Xue Y J , Liu S G , Hu Y M , et al. Factors selection for prediction of carbon flux based on genetic algorithm—neural network. Computer Engineering and Applications, 2011, 47 (18): 237- 240. | |
杨帆, 于鸣, 李丹, 等. 基于粒子群算法优化BP神经网络的CO2通量预测. 黑龙江大学自然科学学报, 2017, 34 (4): 481- 485. | |
Yang F , Yu M , Li D , et al. A CO2 flux prediction model based on particle swarm BP neural network algorithm. Journal of Natural Science of Heilongjiang University, 2017, 34 (4): 481- 485. | |
游桂莹, 张志渊, 张仁铎. 全球陆地生态系统光合作用与呼吸作用的温度敏感性. 生态学报, 2018, 38 (23): 8392- 8399. | |
You G Y , Zhang Z Y , Zhang R D . Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally. Acta Ecologica Sinica, 2018, 38 (23): 8392- 8399. | |
张军辉, 于贵瑞, 韩士杰, 等. 长白山阔叶红松林CO2通量季节和年际变化特征及控制机制. 中国科学: 地球科学, 2006, 36 (S1): 60- 69. | |
Zhang J H , Yu G R , Han S J , et al. Seasonal and interannual variation of CO2 flux and its control mechanism in broad-leaved Korean pine forest in Changbai Mountain. Scientia Sinica(Terrae), 2006, 36 (S1): 60- 69. | |
Alemohammad S H , Fang B , Konings A G , et al. Water, energy, and carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. Biogeosciences, 2017, 14 (18): 4101- 4124.
doi: 10.5194/bg-14-4101-2017 |
|
Bai S, Kolter J Z, Koltun V. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. https://arxiv.org/pdf/1803.01271.pdf. | |
Breiman L . Random forests. Machine Learning, 2001, 45 (1): 5- 32.
doi: 10.1023/A:1010933404324 |
|
Chen Z , Zhu Z , Jiang H , et al. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology, 2020, 591 (2020): 125286. | |
Dixon R K , Brown S , Houghton R A , et al. Carbon pools and flux of global forest ecosystems. Science (American Association for the Advancement of Science), 1994, 263 (5144): 185- 190.
doi: 10.1126/science.263.5144.185 |
|
Dou X , Yang Y . Comprehensive evaluation of machine learning techniques for estimating the responses of carbon fluxes to climatic forces in different terrestrial ecosystems. Atmosphere, 2018, 9 (3): 83.
doi: 10.3390/atmos9030083 |
|
Friend A D , Arneth A , Kiang N Y , et al. FLUXNET and modelling the global carbon cycle. Global Change Biology, 2007, 13 (3): 610- 633.
doi: 10.1111/j.1365-2486.2006.01223.x |
|
Gamboa J C B. 2017. Deep learning for time-series analysis. arXiv: 1701. 01887 [cs. lg]. https://arxiv.org/abs/1701.01887. | |
Gu S , Tang Y , Du M , et al. Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 2003, 108 (D21): 4670. | |
Hochreiter S , Schmidhuber J . Long short-term memory. Neural computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
|
Liu Y , Yu G , Wang Q , et al. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Global Ecology and Biogeography, 2014, 23 (3): 323- 333.
doi: 10.1111/geb.12113 |
|
Malhi Y , Baldocchi D D , Jarvis P G . The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 1999, 22 (6): 715- 740.
doi: 10.1046/j.1365-3040.1999.00453.x |
|
Menze B H , Kelm M B , Masuch R , et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. Bmc Bioinformatics, 2009, 10 (1): 1- 16.
doi: 10.1186/1471-2105-10-1 |
|
Moffat A M , Papale D , Reichstein M , et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 2007, 147, 209- 232.
doi: 10.1016/j.agrformet.2007.08.011 |
|
Raczka B , Davis K J , Huntzinger D N , et al. Evaluation of continental carbon cycle simulations with north American flux tower observations. Ecological Monographs, 2013, 83 (4): 531- 556.
doi: 10.1890/12-0893.1 |
|
Saito M , Kato T , Tang Y . Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 2009, 15, 221- 228.
doi: 10.1111/j.1365-2486.2008.01713.x |
|
Schindler D E , Hilborn R . Prediction, precaution, and policy under global change. Science, 2015, 347 (6225): 953- 954.
doi: 10.1126/science.1261824 |
|
Zhang L, Zhang J, Lü H, et al. 2018. Analysis of carbon flux in terrestrial ecosystems from GOSAT data in China. E3S Web of Conferences, 17, 53: 3012. |
[1] | 温文杰,王冬梅. 青海黄土高寒区4种典型人工林树木叶片碳氮磷含量及化学计量特征[J]. 林业科学, 2022, 58(1): 22-31. |
[2] | 丁家祺,黄文丽,刘迎春,胡杨. 基于机器学习和多源数据的湘西北森林地上生物量估测[J]. 林业科学, 2021, 57(10): 36-48. |
[3] | 郑翔,曹敏敏,纪小芳,方万力,刘胜龙,姜姜. 森林土壤氧化亚氮排放对磷添加响应的研究进展[J]. 林业科学, 2021, 57(6): 150-157. |
[4] | 王振鹏,陈金磊,李尚益,张仕吉,方晰. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020, 56(5): 19-28. |
[5] | 竹万宽,许宇星,王志超,杜阿朋. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5): 1-11. |
[6] | 董利虎,刘永帅,宋博,周翼飞,李凤日. 立木含碳量估算方法比较[J]. 林业科学, 2020, 56(4): 46-54. |
[7] | 朱万泽. 成熟森林固碳研究进展[J]. 林业科学, 2020, 56(3): 117-126. |
[8] | 冯鑫炜,张志强,许行,律江,张海泉,孟祥雪. 欧美杨人工林生态系统净碳交换对环境因子响应的时滞[J]. 林业科学, 2020, 56(2): 12-23. |
[9] | 张雷, 孙鹏森, 刘世荣. 川西亚高山森林不同恢复阶段生长季蒸腾特征[J]. 林业科学, 2020, 56(1): 1-9. |
[10] | 韩新生, 王彦辉, 李振华, 王艳兵, 于澎涛, 熊伟. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子[J]. 林业科学, 2019, 55(9): 11-21. |
[11] | 陈亮, 周国模, 杜华强, 刘玉莉, 毛方杰, 徐小军, 李雪建, 崔璐, 李阳光, 朱迪恩. 基于随机森林模型的毛竹林CO2通量模拟及其影响因子[J]. 林业科学, 2018, 54(8): 1-12. |
[12] | 李伟成, 盛海燕, 蒋跃平, 温星. 基塘系统不同竹林土壤CO2通量特征及其影响因子[J]. 林业科学, 2018, 54(8): 13-22. |
[13] | 刘鹏, 贾昕, 杨强, 查天山, 王奔, 马景永. 毛乌素沙地油蒿灌丛生态系统的土壤呼吸特征[J]. 林业科学, 2018, 54(5): 10-17. |
[14] | 刘志理, 金光泽. 光学仪器法测定叶面积指数季节变化的误差分析[J]. 林业科学, 2016, 52(9): 11-21. |
[15] | 董利虎, 李凤日. 大兴安岭东部天然落叶松林可加性林分生物量估算模型[J]. 林业科学, 2016, 52(7): 13-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||