林业科学 ›› 2020, Vol. 56 ›› Issue (4): 160-169.doi: 10.11707/j.1001-7488.20200418
所属专题: 测试专题
胡海清1,罗碧珍1,*,罗斯生1,魏书精2,王振师2,李小川2,刘菲1
收稿日期:
2019-03-29
出版日期:
2020-04-25
发布日期:
2020-05-29
通讯作者:
罗碧珍
基金资助:
Haiqing Hu1,Bizhen Luo1,*,Sisheng Luo1,Shujing Wei2,Zhenshi Wang2,Xiaochuan Li2,Fei Liu1
Received:
2019-03-29
Online:
2020-04-25
Published:
2020-05-29
Contact:
Bizhen Luo
摘要:
森林生态系统是重要的碳库,在减缓全球气候变暖中具有独特的功能。林火干扰作为非连续的生态因子,是全球生物地球化学循环的驱动因子,可显著改变生态系统的结构和功能以及养分循环和能量传递,引起森林碳库和碳分配格局的变化,进而影响森林演替进程及固碳能力。本文阐述林火干扰对森林生态系统碳库影响的国内外研究方法进展,重点论述林火干扰导致的直接碳损失以及通过森林净初级生产力和土壤呼吸的改变间接影响森林碳循环和碳平衡;并分别阐明林火干扰对植被碳库、凋落物碳库和土壤有机碳库的影响,林火干扰通过直接改变植被覆盖度进而影响植被碳库和营养元素周转,最终影响植被的碳固定及碳从植被向土壤的转移,导致不同碳库之间的重新分配。通过探讨净初级生产力变化对林火干扰的响应,揭示林火干扰对植被碳库循环的间接且长期影响的机制;在林火干扰对生态系统凋落物碳库的影响方面,主要探讨林火干扰后凋落物生产量在不同林火强度和环境梯度下的变化;在林火干扰对土壤有机碳库的影响方面,通常在小尺度范围内影响土壤有机碳库垂直分布变化的主要原因可能是地形条件的变化,而在相对大的区域尺度下,气候、土壤质地、地形、植被及人类活动和管理水平及其交互作用均可影响土壤有机碳库的空间迁移和形态转化,从而导致不同区域范围的土壤有机碳库分异。在此基础上,指出目前研究存在的问题,并提出林火干扰对森林碳库影响的定量化研究路径:1)深入开展林火干扰对森林生态系统碳库循环的影响机制研究;2)加强"植被-土壤-水-微生物-气候"的系统研究;3)完善不同时空尺度下林火干扰对森林碳库周转过程的定量化研究;4)深入探讨林火干扰与森林生态系统碳元素的相互作用关系及影响机制。
中图分类号:
胡海清,罗碧珍,罗斯生,魏书精,王振师,李小川,刘菲. 林火干扰对森林生态系统碳库的影响研究进展[J]. 林业科学, 2020, 56(4): 160-169.
Haiqing Hu,Bizhen Luo,Sisheng Luo,Shujing Wei,Zhenshi Wang,Xiaochuan Li,Fei Liu. Research Progress on Effects of Forest Fire Disturbance on Carbon Pool of Forest Ecosystem[J]. Scientia Silvae Sinicae, 2020, 56(4): 160-169.
蔡文华, 杨健, 刘志华, 等. 黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子. 生态学报, 2012. 32 (11): 3303- 3312. | |
Cai W H , Yang J , Liu Z H , et al. Controls of post-fire tree recruitment in Great Xing'an Mountains in Heilongjiang Province. Acta Ecologica Sinica, 2012. 32 (11): 3303- 3312. | |
常禹, 黄文韬, 胡远满, 等. 林火碳排放研究概况及展望. 生态学杂志, 2015. 34 (10): 2922- 2929. | |
Chang Y , Huang W T , Hu Y M , et al. Contemporary research advances on carbon emissions by forest fires and future prospects. Chinese Journal of Ecology, 2015. 34 (10): 2922- 2929. | |
洪娇娇, 陈宏伟, 齐淑艳, 等. 火干扰强度对大兴安岭森林地上植被碳储量的影响. 应用生态学报, 2017. 28 (8): 2481- 2487. | |
Hong J J , Chen H W , Qi S Y , et al. Effect of fire severity on carbon storage of aboveground vegetation in Great Xing'an Mountains, China. Chinese Journal of Applied Ecology, 2017. 28 (8): 2481- 2487. | |
胡海清, 罗碧珍, 魏书精, 等. 1953-2011年小兴安岭森林火灾含碳气体排放的估算. 应用生态学报, 2013a. 24 (11): 3065- 3076. | |
Hu H Q , Luo B Z , Wei S J , et al. Estimation of carbonaceous gases emission from forest fires in Xiaoxing'an Mountains of Northeast China in 1953-2011. Chinese Journal of Applied Ecology, 2013a. 24 (11): 3065- 3076. | |
胡海清, 魏书精, 孙龙, 等. 气候变化、火干扰与生态系统碳循环. 干旱区地理, 2013b. 36 (1): 58- 76. | |
Hu H Q , Wei S J , Sun L , et al. Interaction among climate change, fire disturbance and ecosystem carbon cycle. Arid Land Geography, 2013b. 36 (1): 58- 76. | |
黄超, 贺红士, 梁宇, 等. 气候变化、林火和采伐对大兴安岭森林碳储量的影响. 应用生态学报, 2018. 29 (7): 2088- 2100. | |
Huang C , He H S , Liang Y , et al. Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing'an Mountains, China. Chinese Journal of Applied Ecology, 2018. 29 (7): 2088- 2100. | |
黄麟, 邵全琴, 刘纪远. 1950-2008年江西省森林火灾的碳损失估算. 应用生态学报, 2010. 21 (9): 2241- 2248. | |
Huang L , Shao Q Q , Liu J Y . Carbon losses from forest fire in Jinagxi province, China in 1950-2008. Chinese Journal of Applied Ecology, 2010. 21 (9): 2241- 2248. | |
李飞, 胡同欣, 赵彬清, 等. 大兴安岭火烧迹地凋落物分解动态变化研究. 森林工程, 2018. 34 (5): 31- 38.
doi: 10.3969/j.issn.1006-8023.2018.05.006 |
|
Li F , Hu T X , Zhao B Q , et al. Study on the dynamic changes of litter decomposition in burned areas in Great Xing'an Mountains. Forest Engineering, 2018. 34 (5): 31- 38.
doi: 10.3969/j.issn.1006-8023.2018.05.006 |
|
林思美, 黄华国. 基于3PGS-MTCLIM模型模拟根河林区火后植被净初级生产力恢复及其影响因子. 应用生态学报, 2018. 29 (11): 3712- 3722. | |
Lin S M , Huang H G . Simulating the post-fire net primary production restoration and its affecting factors by using MTCLIM and 3PGS model in Genhe forest region, Northeast China. Chinese Journal of Applied Ecology, 2018. 29 (11): 3712- 3722. | |
刘魏魏, 王效科, 逯非, 等. 造林再造林、森林采伐、气候变化、CO2浓度升高、火灾和虫害对森林固碳能力的影响. 生态学报, 2016. 36 (8): 2113- 2122. | |
Liu W W , Wang X K , Lu F , et al. Influence of afforestation, reforestation, forest logging climate change, CO2 concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem. Acta Ecologica Sinica, 2016. 36 (8): 2113- 2122. | |
罗碧珍, 罗斯生, 魏书精, 等. 生物质燃烧排放物研究进展. 南京林业大学学报:自然科学版, 2018. 42 (6): 191- 196. | |
Luo B Z , Luo S S , Wei S J , et al. Review on emission from biomass combustion. Journal of Nanjing Forestry University:Natural Sciences Edition, 2018. 42 (6): 191- 196. | |
孙龙, 张瑶, 国庆喜, 等. 1987年大兴安岭林火碳释放及火后NPP恢复. 林业科学, 2009. 45 (12): 100- 104. | |
Sun L , Zhang Y , Guo Q X , et al. Carbon emission and dynamic of NPP post forest fires in 1987 in Daxing'an Mountains. Scientia Silvae Sinicae, 2009. 45 (12): 100- 104. | |
田晓瑞, 舒立福, 王明玉, 等. 卫星遥感数据在林火排放模型中的应用. 安全与环境学报, 2006. 6 (4): 104- 108.
doi: 10.3969/j.issn.1009-6094.2006.04.025 |
|
Tian X R , Shu L F , Wang M Y , et al. An emission model for the use of satellite data to the forest fire evaluation. Journal of Safety and Environment, 2006. 6 (4): 104- 108.
doi: 10.3969/j.issn.1009-6094.2006.04.025 |
|
田晓瑞, 舒立福, 王明玉. 1991-2000年中国森林火灾直接释放碳量估算. 火灾科学, 2003. 12 (1): 7- 10. | |
Tian X R , Shu L F , Wang M Y . Direct carbon emissions from Chinese forest fires, 1991-2000. Fire Safety Science, 2003. 12 (1): 7- 10. | |
王效科, 冯宗炜, 庄亚辉. 中国森林火灾释放的CO2、CO和CH4研究. 林业科学, 2001. 37 (1): 90- 95.
doi: 10.3321/j.issn:1001-7488.2001.01.013 |
|
Wang X K , Feng Z W , Zhuang Y H . CO2, CO and CH4 emissions from forest fires in China. Scientia Silvae Sinicae, 2001. 37 (1): 90- 95.
doi: 10.3321/j.issn:1001-7488.2001.01.013 |
|
魏书精, 罗碧珍, 胡海清, 等. 黑龙江省温带森林火灾碳排放的计量估算. 生态学报, 2014. 34 (11): 3048- 3063. | |
Wei S J , Luo B Z , Sun L , et al. Estimates of carbon emissions caused by forest fires in the temperate climate of Heilongjiang Province, China, from 1953 to 2012. Acta Ecologica Sinica, 2014. 34 (11): 3048- 3063. | |
吴沁淳, 陈方, 王长林, 等. 自然火灾碳排放估算模型参数的遥感反演进展. 遥感学报, 2016. 20 (1): 11- 26. | |
Wu Q C , Chen F , Wang C L , et al. Estimationof carbon emissions from biomass burning based on parameters retrieved. Journal of Remote Sensing, 2016. 20 (1): 11- 26. | |
辛颖, 邹梦玲, 赵雨森, 等. 大兴安岭火烧迹地不同恢复方式碳储量差异. 应用生态学报, 2015. 26 (11): 3443- 3450. | |
Xin Y , Zou M L , Zhao Y S , et al. Difference between carbon storage of burned area under different restorations in Greater Xing'an Mountains, Northeast China. Chinese Journal of Applied Ecology, 2015. 26 (11): 3443- 3450. | |
徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 2007. 31 (2): 175- 188.
doi: 10.3321/j.issn:1005-264X.2007.02.002 |
|
Xu X F , Tian H Q , Wan S Q . Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology, 2007. 31 (2): 175- 188.
doi: 10.3321/j.issn:1005-264X.2007.02.002 |
|
周文昌, 牟长城, 刘夏, 等. 火干扰对小兴安岭白桦沼泽和落叶松-苔草沼泽凋落物和土壤碳储量的影响. 生态学报, 2012. 32 (20): 6387- 6395. | |
Zhou W C , Mu C C , Liu X , et al. Effects of fire disturbance on litter mass and soil carbon storage of Betula platyphylla and Larix gmelinii-Carex schmidtii swamps in the Xiaoxing'an Mountains of Northeast China. Acta Ecologica Sinica, 2012. 32 (20): 6387- 6395. | |
Alcañiz M , Outeiro L , Francos M , et al. Effects of prescribed fires on soil properties:a review. Science of the Total Environment, 2018. 613, 944- 957. | |
Amiro B D , Orchansky A L , Barr A G , et al. The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 2006. 140 (1/4): 41- 50. | |
Amiro B D , Todd B M , Wotton K A , et al. Direct carbon emissions from Canadian forest fires, 1959-1999. Canadian Journal of Forest Research, 2001. 31, 512- 525.
doi: 10.1139/x00-197 |
|
Andreae M O , Merlet P . Emissions of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 2001. 15 (4): 955- 966.
doi: 10.1029/2000GB001382 |
|
Berenguer E , Malhi Y , Brando P , et al. Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B:Biological Sciences, 2018. | |
Brecka A F J , Shahi C , Chen H Y H . Climate change impacts on boreal forest timber supply. Forest Policy and Economics, 2018. 92, 11- 21.
doi: 10.1016/j.forpol.2018.03.010 |
|
Brennan K E C , Christie F J , York A . Global climate change and litter decomposition:more frequent fire slows decomposition and increases the functional importance of invertebrates. Global Change Biology, 2009. 15 (12): 2958- 2971.
doi: 10.1111/j.1365-2486.2009.02011.x |
|
Certini G . Effects of fire on properties of forest soils:a review. Oecologia, 2005. 143 (1): 1- 10.
doi: 10.1007/s00442-004-1788-8 |
|
Chapin F S , Woodwell G M , Randerson J T , et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 2006. 9 (7): 1041- 1050.
doi: 10.1007/s10021-005-0105-7 |
|
Chen D , Pereira J M C , Masiero A , et al. Mapping fire regimes in China using MODIS active fire and burned area data. Applied Geography, 2017. 85, 14- 26.
doi: 10.1016/j.apgeog.2017.05.013 |
|
Clark K L , Skowronski N , Renninger H , et al. Climate change and fire management in the mid-Atlantic region. Forest ecology and management, 2014. 327, 306- 315.
doi: 10.1016/j.foreco.2013.09.049 |
|
Conard S G , Ivanova G A . Wildfire in Russian boreal forests-potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environmental Pollution, 1997. 98 (3): 305- 313.
doi: 10.1016/S0269-7491(97)00140-1 |
|
Conard S G , Sukhinin A I , Stocks B J , et al. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Climatic Change, 2002. 55 (1): 197- 211. | |
Cools N , Vesterdal L , De Vos B , et al. Tree species is the major factor explaining C:N ratios in European forest soils. Forest Ecology and Management, 2014. 311 (S1): 3- 16. | |
Crutzen P J , Heidt L E , Krasnec J P , et al. Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS. Nature, 1979. 282 (5736): 253- 256.
doi: 10.1038/282253a0 |
|
Dixon R K , Solomon A M , Brown S , et al. Carbon pools and flux of global forest ecosystems. Science, 1994. 263 (5144): 185- 190.
doi: 10.1126/science.263.5144.185 |
|
Flannigan M D , Krawchuk M A , de Groot W J , et al. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 2009. 18 (5): 483- 507.
doi: 10.1071/WF08187 |
|
Flannigan M , Cantin A S , De Groot W J , et al. Global wildland fire season severity in the 21st century. Forest Ecology and Management, 2013. 294, 54- 61.
doi: 10.1016/j.foreco.2012.10.022 |
|
French H F N , McKenzie D , Erickson T , et al. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system. Earth Interactions, 2014. 18 (16): 1- 26.
doi: 10.1175/EI-D-14-0002.1 |
|
Giglio L , Randerson J T , van der Werf G R , et al. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeoscience, 2009. 7 (3): 1171- 1186. | |
Giglio L , Randerson J T , van der Werf G R . Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research:Biogeosciences, 2013. 118 (1): 317- 328.
doi: 10.1002/jgrg.20042 |
|
Girard F , Payette S , Gagnon R . Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. Journal of Biogeography, 2008. 35 (3): 529- 537.
doi: 10.1111/j.1365-2699.2007.01816.x |
|
Harden J W , Trumbore S E , Stocks B J , et al. The role of fire in the boreal carbon budget. Global Change Biology, 2000. 6 (S1): 174- 184.
doi: 10.1046/j.1365-2486.2000.06019.x |
|
Herrero C , Bravo F . Can we get an operational indicator of forest carbon sequestration?:a case study from two forest regions in Spain. Ecological Indicators, 2012. 17, 120- 126.
doi: 10.1016/j.ecolind.2011.04.021 |
|
Holden S R , Gutierrez A , Treseder K K . Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems, 2013. 16 (1): 34- 46.
doi: 10.1007/s10021-012-9594-3 |
|
Hurteau M D , Westerling A L , Wiedinmyer C , et al. Projected effects of climate and development on California wildfire emissions through 2100. Environmental Science & Technology, 2014. 48 (4): 2298- 2304. | |
Jiang W , Yuan L , Wang W , et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecological Indicators, 2015. 51, 117- 126.
doi: 10.1016/j.ecolind.2014.07.031 |
|
Kang B T , Sajjapongse A . Effect of heating on properties of some soils from southern Nigeria and growth of rice. Plant and Soil, 1980. 55 (1): 85- 95.
doi: 10.1007/BF02149712 |
|
Kasischke E S , Bruhwiler L P . Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysical Research, 2003. 107 (D1)
doi: 10.1029/2001JD000461 |
|
Kuzyakov Y . Review:Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 2002. 165 (4): 382- 396.
doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# |
|
Lal R . Forest soils and carbon sequestration. Forest Ecology and Management, 2005. 220 (1-3): 242- 258.
doi: 10.1016/j.foreco.2005.08.015 |
|
Larkin N K , Raffuse S M , Strand T M . Wildland fire emissions, carbon, and climate:US emissions inventories. Forest Ecology and Management, 2014. 317, 61- 69.
doi: 10.1016/j.foreco.2013.09.012 |
|
Li F , Bond-Lamberty B , Levis S . Quantifying the role of fire in the Earth system-part 2:impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences, 2014. 11 (5): 1345- 1360.
doi: 10.5194/bg-11-1345-2014 |
|
Ludwig S M , Alexander H D , Kielland K , et al. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Global Change Biology, 2018. 24 (12): 5841- 5852.
doi: 10.1111/gcb.14455 |
|
Lukeš P , Stenberg P , Rautiainen M . Relationship between forest density and albedo in the boreal zone. Ecological Modelling, 2013. 261, 74- 79. | |
Maes S L , Blondeel H , Perring M P , et al. Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. Forest Ecology and Management, 2019. 433, 405- 418.
doi: 10.1016/j.foreco.2018.10.056 |
|
Martí-Roura M , Rovira P , Casals P , et al. Post-fire mineral N allocation and stabilisation in soil particle size fractions in Mediterranean grassland and shrubland. Soil Biology and Biochemistry, 2014. 75, 124- 132.
doi: 10.1016/j.soilbio.2014.04.009 |
|
Miquelajauregui Y , Cumming S G , Gauthier S . Sensitivity of boreal carbon stocks to fire return interval, fire severity and fire season:s simulation study of black spruce forests. Ecosystems, 2019. 22 (3): 544- 562.
doi: 10.1007/s10021-018-0287-4 |
|
Mollicone D , Eva H D , Achard F . Ecology:human role in Russian wild fires. Nature, 2006. 440 (7083): 436- 437.
doi: 10.1038/440436a |
|
Nalder I A , Wein R W . Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada. Global Biogeochemical Cycles, 1999. 13 (4): 951- 968.
doi: 10.1029/1999GB900056 |
|
O'rourke S M , Angers D A , Holden N M , et al. Soil organic carbon across scales. Global change biology, 2015. 21 (10): 3561- 3574.
doi: 10.1111/gcb.12959 |
|
Page S E , Siegert F , Rieley J O , et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 2002. 420 (6911): 61- 65.
doi: 10.1038/nature01131 |
|
Pan Y , Birdsey R A , Fang J , et al. A large and persistent carbon sink in the world's forests. Science, 2011. 333 (6045): 988- 993.
doi: 10.1126/science.1201609 |
|
Pellegrini A F A , Ahlström A , Hobbie S E , et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018. 553 (7687): 194- 198.
doi: 10.1038/nature24668 |
|
Penman T D , York A . Climate and recent fire history affect fuel loads in Eucalyptus forests:implications for fire management in a changing climate. Forest Ecology and Management, 2010. 260 (10): 1791- 1797.
doi: 10.1016/j.foreco.2010.08.023 |
|
Pereira P , Cerdà A , Lopez A J , et al. Short-term vegetation recovery after a grassland fire in Lithuania:The effects of fire severity, slope position and aspect. Land Degradation & Development, 2016. 27 (5): 1523- 1534. | |
Pereira P , Úbeda X , Martin D A . Fire severity effects on ash chemical composition and water-extractable elements. Geoderma, 2012. 191 (S1): 105- 114. | |
Razavi B S , Blagodatskaya E , Kuzyakov Y . Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect-a case study on loamy haplic Luvisol. Frontiers in Microbiology, 2015. 6, 11- 26. | |
Santín C. Doerr S , Kane E , et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 2016. 22 (1): 76- 91. | |
Seidl R , Schelhaas M J , Rammer W , et al. Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 2014. 4 (9): 806- 810.
doi: 10.1038/nclimate2318 |
|
Seiler W , Crutzen J P . Estimates of the gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 1980. 2 (3): 207- 247.
doi: 10.1007/BF00137988 |
|
Stevens-Rumann C S , Kemp K B , Higuera P E , et al. Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 2018. 21 (2): 243- 252.
doi: 10.1111/ele.12889 |
|
Turetsky M R , Kane E S , Harden J W , et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 2011. 4 (1): 27- 31. | |
van der Werf G R , Morton D C , DeFries R S , et al. CO2 emissions from forest loss. Nature Geoscience, 2009. 2 (11): 737- 738.
doi: 10.1038/ngeo671 |
|
van der Werf G R , Randerson J T , Collatz G J , et al. Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology, 2003. 9 (4): 547- 562.
doi: 10.1046/j.1365-2486.2003.00604.x |
|
Veraverbeke S , Sedano F , Hook S J , et al. Mapping the daily progression of large wildland fires using MODIS active fire data. International Journal of Wildland Fire, 2014. 23 (5): 655- 667.
doi: 10.1071/WF13015 |
|
White J C , Wulder M A , Hermosilla T , et al. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment, 2017. 194, 303- 321.
doi: 10.1016/j.rse.2017.03.035 |
|
Wotton B M , Nock C A , Flannigan M D . Forest fire occurrence and climate change in Canada. International Journal of Wildland Fire, 2010. 19 (3): 253- 271. | |
Yang Y , Tilman D , Furey G , et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications, 2019. 10 (1): 1- 7. | |
Yin Y , Ciais P , Chevallier F , et al. Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophysical Research Letters, 2016. 43 (19): 10472- 10479.
doi: 10.1002/2016GL070971 |
|
Yuan Z Y , Chen H Y H . Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age:literature review and meta-analyses. Critical Reviews in Plant Sciences, 2010. 29 (4): 204- 221.
doi: 10.1080/07352689.2010.483579 |
|
Zhang Q , Kong D , Singh V P , et al. Response of vegetation to different time-scales drought across China:Spatiotemporal patterns, causes and implications. Global and Planetary Change, 2017. 152, 1- 11.
doi: 10.1016/j.gloplacha.2017.02.008 |
|
Zhang X , Kondragunta S , Ram J , et al. Near-Real Time Global Biomass Burning Emissions Product from Multiple Geostationary Satellites. Journal of Geophysical Research Atmospheres, 2013. 117 (D14): 75- 85. | |
Zhang Y H , Wooster M J , Tutubalina O , et al. Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sensing of Environment, 2003. 87 (1): 1- 15.
doi: 10.1016/S0034-4257(03)00141-X |
[1] | 陈伟, 杨飞, 王卷乐, 程淑兰. 冰雪冻灾干扰下的亚热带森林生态系统恢复力综合定量评价——以湖南省道县为例[J]. 林业科学, 2018, 54(6): 1-8. |
[2] | 李翀, 周国模, 施拥军, 周宇峰, 徐林, 范叶青, 沈振明, 李少虹, 吕玉龙. 不同经营措施对毛竹林生态系统净碳汇能力的影响[J]. 林业科学, 2017, 53(2): 1-9. |
[3] | 陶玉柱, 邸雪颖. 火对森林土壤微生物群落的干扰作用及其机制研究进展[J]. 林业科学, 2013, 49(11): 146-157. |
[4] | 郭剑芬;杨玉盛;钟羡芳;贺旭东. 森林粗木质残体的贮量和碳库及其影响因素[J]. 林业科学, 2011, 47(2): 125-133. |
[5] | 王兵;任晓旭;胡文. 中国森林生态系统服务功能及其价值评估[J]. 林业科学, 2011, 47(2): 145-153. |
[6] | 王懿祥;陆元昌 张守攻 白尚斌 刘宪钊. 森林生态系统健康评价现状及展望[J]. 林业科学, 2010, 46(2): 134-140. |
[7] | 侯建华 董建新 高立杰 高宝嘉 李兰会. 退化森林生态系统人工针叶林恢复对鸟类群落的影响*[J]. 林业科学, 2009, 12(5): 115-120. |
[8] | 张胜利;. 秦岭火地塘林区森林生态系统对降水中重金属的作用[J]. 林业科学, 2009, 12(11): 55-62. |
[9] | 石春娜 王立群. 我国森林资源质量变化及现状分析[J]. 林业科学, 2009, 12(11): 90-97. |
[10] | 杨锋伟 鲁绍伟 王兵. 南方雨雪冰冻灾害受损森林生态系统生态服务功能价值评估[J]. 林业科学, 2008, 44(11): 101-111. |
[11] | 徐凤兰 钱国钦 杨伦增. 冰冻灾害造成森林生态服务价值损失的经济评估——以福建省受灾森林为例[J]. 林业科学, 2008, 44(11): 193-201. |
[12] | 张耀启 毛显强 李一清. 森林生态系统历史变迁的经济学解释[J]. 林业科学, 2007, 43(9): 96-104. |
[13] | 朱建华 侯振宏 张治军 罗云建;张小全. 气候变化与森林生态系统:影响、脆弱性与适应性[J]. 林业科学, 2007, 43(11): 138-145. |
[14] | 郭剑芬;杨玉盛 陈光水 林鹏 谢锦升. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4): 93-100. |
[15] | 杨万勤 王开运. 森林土壤酶的研究进展[J]. 林业科学, 2004, 40(2): 152-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||