|
艾斯克 F, 霍兰德 J, 蒙特卡 C. 2019. 动植物育种遗传数据分析. 林元震, 丁昌俊, 译. 北京: 科学出版社.
|
|
Isik F, Holland J, Maltecca C. 2019. Genetic data analysis for plant and animal breeding. Lin Y Z, Ding C J, translation. Beijing: Science Press. [in Chinese]
|
|
金国庆, 张 振, 余启新, 等. 2019. 马尾松2个世代种子园6年生家系生长的遗传变异与增益比较. 林业科学, 55(7): 57−67.
|
|
Jin G Q, Zhang Z, Yu Q X, et al. 2019. Comparisons of genetic variation and gains of 6-year-old families from first-and second-generation seed orchards of Pinus massoniana. Scientia Silvae Sinicae, 55(7): 57–67. [in Chinese]
|
|
李金花. 基于BLUP和GGE双标图的黑杨派无性系生长性状基因型与环境互作效应. 林业科学, 2021, 57 (6): 64- 73.
doi: 10.11707/j.1001-7488.20210607
|
|
Li J H. Genotype by environment interaction for growth traits of clones of Populus section Aigeiros based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2021, 57 (6): 64- 73.
doi: 10.11707/j.1001-7488.20210607
|
|
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516
|
|
Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516
|
|
刘 宁, 丁昌俊, 李 波, 等. 12个欧美杨无性系生长初期基因型与环境的互作效应. 林业科学, 2020, 56 (8): 63- 72.
doi: 10.11707/j.1001-7488.20200808
|
|
Liu N, Ding C J, Li B, et al. Effects of genotype by environment interaction of 12 Populus × euramericana clones in their early growth. Scientia Silvae Sinicae, 2020, 56 (8): 63- 72.
doi: 10.11707/j.1001-7488.20200808
|
|
欧阳芳群, 祁生秀, 范国霞, 等. 青海云杉自由授粉家系遗传变异与基于BLUP的改良代亲本选择. 南京林业大学学报(自然科学版), 2019, 43 (6): 53- 59.
|
|
Ouyang F Q, Qi S X, Fan G X, et al. Genetic variation and improved parents selection of open pollination families of Picea crassifolia Kom. basing one BLUP method. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43 (6): 53- 59.
|
|
潘艳艳, 许贵友, 董利虎, 等. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版), 2019, 43 (2): 14- 22.
|
|
Pan Y Y, Xu G Y, Dong L H, et al. Genetic variations of seedling growth traits among full-sib families of Larix kaempferi. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43 (2): 14- 22.
|
|
王楚彪, 罗建中, 何文亮, 等. 桉树无性系多区域联合测试的G×E分析及选优. 林业科学, 2022, 58 (11): 108- 117.
doi: 10.11707/j.1001-7488.20221110
|
|
Wang C B, Luo J Z, He W L, et al. G×E analysis and selection of eucalyptus clones by multi-region combined test. Scientia Silvae Sinicae, 2022, 58 (11): 108- 117.
doi: 10.11707/j.1001-7488.20221110
|
|
王文月, 张 振, 金国庆, 等. 两地点8年生柏木生长性状家系变异及选择. 南京林业大学学报(自然科学版), 2023, 47 (2): 42- 48.
|
|
Wang W Y, Zhang Z, Jin G Q, et al. Family variation and selection of growth traits of eight-year-old Cupressus funebris in two sites. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47 (2): 42- 48.
|
|
魏嘉彤, 陈思琪, 芦贤博, 等. 基于生长与木材性状的红松优良种源评价选择. 北京林业大学学报, 2022, 44 (3): 12- 23.
doi: 10.12171/j.1000-1522.20210247
|
|
Wei Q T, Chen S Q, Lu X B, et al. Evaluation and selection of excellent provenances of Pinus koraiensis based on growth and wood properties. Journal of Beijing Forestry University, 2022, 44 (3): 12- 23.
doi: 10.12171/j.1000-1522.20210247
|
|
解懿妮, 刘青华, 蔡燕灵, 等. 5年生马尾松生长性状3地点家系变异及评价. 林业科学研究, 2020, 33 (5): 1- 12.
|
|
Xie Y N, Liu Q H, Cai Y L, et al. Family variation and evaluation of growth traits of 5-year-old Pinus massoniana in three sites. Forest Research, 2020, 33 (5): 1- 12.
|
|
杨 涛, 邱勇斌, 沈 汉, 等. 柏木无性系和家系含碳量的早期评价与优良品系选择. 林业科学, 2023, 59 (9): 85- 94.
doi: 10.11707/j.1001-7488.LYKX20230008
|
|
Yang T, Qiu Y B, Shen H, et al. Early evaluation of carbon content of cypress clones and families and superior strains. Scientia Silvae Sinicae, 2023, 59 (9): 85- 94.
doi: 10.11707/j.1001-7488.LYKX20230008
|
|
袁承志, 陈 坦, 张 振, 等. 不同养分环境下钙添加对柏木家系苗木生长和根系发育的影响. 应用与环境生物学报, 2020, 26 (5): 1161- 1168.
|
|
Yuan C Z, Chen T, Zhang Z, et al. Effects of calcium addition on growth and root development of Cupressus funebris families in different nutrient conditions. Journal of Applied and Environmental Biology, 2020, 26 (5): 1161- 1168.
|
|
郑聪慧, 张鸿景, 王玉忠, 等. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析. 林业科学, 2019, 55 (8): 73- 83.
doi: 10.11707/j.1001-7488.20190809
|
|
Zheng C H, Zhang H J, Wang Y Z, et al. An analysis of a regional trial of Larix principis-rupprechtii families based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2019, 55 (8): 73- 83.
doi: 10.11707/j.1001-7488.20190809
|
|
周 琳. 2017. 柏木优树子代遗传分析及优良家系评选. 成都: 四川农业大学.
|
|
Zhou L. 2017. Genetic analysis Y and superior family selection about Cupressus funebris progeny. Cheng’du: Sichuan Agricultural University. [in Chinese]
|
|
Braga C R, Paludeto Z G J, Souza M B, et al. Genetic parameters and genotype × environment interaction in Pinus taeda clonal tests. Forest Ecology and Management, 2020, 474, 118342.
|
|
Chmura D J, Barzdajn W, Kowalkowski W, et al. Analysis of genotype-by-environment interaction in a multisite progeny test with Scots pine for supporting selection decisions. European Journal of Forest Research, 2021, 140 (6): 1457- 1467.
doi: 10.1007/s10342-021-01417-5
|
|
Gapare W J, Ivković M, Liepe K J, et al. Drivers of genotype by environment interaction in radiata pine as indicated by multivariate regression trees. Forest Ecology and Management, 2015, 353, 21- 29.
doi: 10.1016/j.foreco.2015.05.027
|
|
Ivkovic M, Gapare W, Yang H X, et al. Pattern of genotype by environment interaction for radiata pine in southern Australia. Annals of Forest Science, 2015, 72 (3): 391- 401.
|
|
Lai M, Dong L M, Yi M, et al. Genetic variation, heritability and genotype × environment interactions of resin yield, growth traits and morphologic traits for Pinus elliottii at three progeny trials. Forests, 2017, 8 (11): 409.
doi: 10.3390/f8110409
|
|
Lin Y Z, Yang H X, Ivković M, et al. Effect of genotype by spacing interaction on radiata pine genetic parameters for height and diameter growth. Forest Ecology and Management, 2013, 304, 204- 211.
doi: 10.1016/j.foreco.2013.05.015
|
|
Ling J J, Yao X, Hu J W, et al. Genotype by environment interaction analysis of growth of Picea koraiensis families at different sites using BLUP-GGE. New Forests, 2021, 52, 113- 127.
|
|
Nocetti M, Della Rocca G, Berti S, et al. Genetic growth parameters and morphological traits of canker-resistant cypress clones selected for timber production. Tree Genetics & Genomes, 2015, 11 (4): 73.
|
|
Ren J S, Ji X Y, Wang C H, et al. Variation and genetic parameters of leaf morphological traits of eight families from Populus simonii × P. nigra. Forests, 2020, 11 (12): 1319.
doi: 10.3390/f11121319
|
|
Valérie P, Salvador G A, Silvio S, et al. Genotype × environment interaction and climate sensitivity in growth and wood density of European larch. Forest Ecology and Management, 2023, 545, 121259.
|
|
Wu X H. Benefits and risks of using clones in forestry–a review. Scandinavian Journal of Forest Research, 2019, 34 (5): 352- 359.
|
|
Yang T, Wang P C, Wang W Y, et al. Early growth evaluation and biomass allocation difference between clones and families in Cupressus funebris. European Journal of Forest Research, 2023, 142 (4): 839- 850.
|
|
Yang Z Q, Xia H, Tan J H, et al. Selection of superior families of Pinus massonianain southern China for large-diameter construction timber. Journal of Forestry Research, 2020, 31 (2): 475- 484.
|
|
Yuan C Z, Zhang Z, Jin G Q, et al. Genetic parameters and genotype by environment interactions influencing growth and productivity in Masson pine in east and central China. Forest Ecology and Management, 2021, 487, 118991.
|
|
Zhang H, Zhang Y, Zhang D W, et al. Progeny performance and selection of superior trees within families in Larix olgensis. Euphytica: International Journal of Plant Breeding, 2020, 216 (4): 1- 10.
|