林业科学 ›› 2025, Vol. 61 ›› Issue (3): 108-120.doi: 10.11707/j.1001-7488.LYKX20240174
杨世纪1,万艳芳2,白雨诗2,王冬梅1,*(),于澎涛2,王彦辉2,王巍樾1,陈瑜佳1
收稿日期:
2024-04-01
出版日期:
2025-03-25
发布日期:
2025-03-27
通讯作者:
王冬梅
E-mail:dmwang@126.com
基金资助:
Shiji Yang1,Yanfang Wan2,Yushi Bai2,Dongmei Wang1,*(),Pengtao Yu2,Yanhui Wang2,Weiyue Wang1,Yujia Chen1
Received:
2024-04-01
Online:
2025-03-25
Published:
2025-03-27
Contact:
Dongmei Wang
E-mail:dmwang@126.com
摘要:
目的: 在作为我国黄土高原重要水源地宁夏六盘山的半干旱区,定量研究华北落叶松人工林蒸腾对气象条件、土壤水分、林冠结构的响应规律及其坡向差异,为该区域林水协调管理提供理论依据。方法: 2023年5—10月,在叠叠沟小流域西北坡NW50°、正北坡N0°、东北坡NE30°的典型坡面中部,各设置1块20 m×20 m华北落叶松人工林固定样地,连续监测树干液流密度、气象因子(表示为日潜在蒸散量PET)和0~60 cm土层含水量(表示为相对土壤含水量REW),并定期监测林冠层叶面积指数(LAI),分析不同坡向林分蒸腾对PET、REW和LAI的响应。结果: 1)2023年生长季(5—10月),正北坡林分日均蒸腾量最大(0.93 mm·d?1),比西北坡(0.59 mm·d?1)和东北坡(0.73 mm·d?1)分别高0.34、0.20 mm·d?1;在干旱期(REW<0.45)的林分蒸腾各坡向间较接近且差异不显著(P>0.05)。2)林分日蒸腾量随REW和LAI增加呈先快速上升后缓慢上升并渐趋稳定的变化,可用指数函数描述;随PET增加呈先快速上升后缓慢上升并在达到某峰值后略微下降的变化,可用二项式函数描述。3)林分日蒸腾量对PET的响应在非干旱期(REW>0.45)显著强于干旱期(REW<0.45),表现为林分蒸腾量随PET增加的增长速率在非干旱期大于干旱期,且阴坡林分的增长速率明显高于半阴坡林分;而干旱期林分蒸腾量受到土壤水分的限制,表现为林分蒸腾随 REW 增加呈快速增加趋势,且半阴坡的增长速率明显高于阴坡,即半阴坡林分蒸腾对土壤干旱的响应比阴坡林分更敏感。基于各因子对林分蒸腾影响的贡献率分析,发现REW是导致干旱期林分蒸腾差异的主导因素,平均贡献率为10.21%,且在半阴坡样地的抑制效果最明显(11.8%);在非干旱期,LAI是导致林分蒸腾差异的主导因素,偏离正北方向越大时LAI抑制林分蒸腾效果越弱。结论: 在持续土壤干旱期,华北落叶松林分蒸腾受到土壤干旱的明显抑制,其中土壤水分相对较好的阴坡林分的蒸腾受到的土壤干旱限制作用低于半阴坡林分。在未来森林管理中,考虑到干旱事件会越来越频繁和严重,应根据不同坡向进行管理。本研究结果可为制定具有气候变化适应性的林水协调管理方案提供理论基础。
中图分类号:
杨世纪,万艳芳,白雨诗,王冬梅,于澎涛,王彦辉,王巍樾,陈瑜佳. 六盘山不同坡向华北落叶松林分蒸腾对环境因子的响应[J]. 林业科学, 2025, 61(3): 108-120.
Shiji Yang,Yanfang Wan,Yushi Bai,Dongmei Wang,Pengtao Yu,Yanhui Wang,Weiyue Wang,Yujia Chen. Transpiration of Larix gmelinii var. principis-rupprechtii Plantations on Different Slope Aspects in Liupan Mountains in Response of Environmental Factors[J]. Scientia Silvae Sinicae, 2025, 61(3): 108-120.
表2
样地和样本的基本特征"
样地 Sample plots | 坡向 Slope aspect (°) | 海拔 Altitude/m | 坡度 Slope (°) | 林分密度 Stand density/ (plant·hm?2) | 林冠郁闭度 Canopy density | 林龄 Tree age/a | 胸径 DBH/cm | 树高 Tree height/m | 枝下高 Clear length/m | 冠幅直径 Canopy diameter/m |
西北坡NW50° | ?50° | 24 | 0.73 | 24 | 10.9±3.5 | 8.7±2.6 | 2.8±1.3 | 3.0±1.0 | ||
正北坡N0° | 0° | 26 | 0.75 | 23 | 13.5±3.1 | 10.8±2.5 | 2.8±1.5 | 3.6±1.3 | ||
东北坡NE30° | 30° | 32 | 0.73 | 24 | 12.7±4.2 | 10.6±2.5 | 4.6±1.8 | 3.1±0.9 |
表3
样树基本信息"
样地 Plot | 树号 Tree No. | 胸径 DBH/cm | 树高 Height/m | 冠幅直径 Crown diameter/m | 胸高边材面积 Sapwood area/cm2 |
西北坡 NW50° | 1 | 10.8 | 10.3 | 2.81 | 61.57 |
2 | 12.6 | 8.7 | 3.94 | 79.59 | |
3 | 14.6 | 10.8 | 3.66 | 101.72 | |
4 | 16.1 | 11.7 | 4.04 | 119.72 | |
正北坡 N0° | 5 | 11.2 | 10 | 1.8 | 65.41 |
6 | 13.9 | 13.1 | 3.92 | 93.73 | |
7 | 15.2 | 9.5 | 4.52 | 108.78 | |
8 | 17.2 | 12.8 | 4.44 | 133.65 | |
东北坡 NE30° | 9 | 11.7 | 10.3 | 3.57 | 70.35 |
10 | 14 | 13.4 | 3.56 | 94.86 | |
11 | 15.3 | 12.2 | 3.11 | 109.97 | |
12 | 18.8 | 13.1 | 4.93 | 154.99 |
表4
各坡向多因素林分日蒸腾的多因子耦合模型"
样地Plot | 模型 Model | R2 |
西北坡NW50° | 0.88 | |
正北坡N0° | 0.82 | |
东北坡NE30° | 0.85 |
曹恭祥, 王云霓, 郭 中, 等. 六盘山南侧华北落叶松人工林蒸腾对土壤水分和潜在蒸散的响应. 应用生态学报, 2020, 31 (10): 3376- 3384. | |
Cao G X, Wang Y N, Guo Z, et al. Responses of transpiration to variation in evaporative demands and soil water in a larch plantation at the south side of Liupan Mountains, China. Chinese Journal of Applied Ecology, 2020, 31 (10): 3376- 3384. | |
曹恭祥. 2014. 六盘山香水河小流域植被结构水文影响及其坡面尺度效应. 北京: 中国林业科学研究院. | |
Cao G X. 2014. Hydrological impact and the slope scale effect of the vegetation structure in the Xiangshuihe watershed in Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
曹 铨, 王自奎, 来兴发, 等. 黄土高原苹果树生育期树干液流特征及其影响因子研究. 干旱地区农业研究, 2023, 41 (4): 267- 274, 288. | |
Cao Q, Wang Z K, Lai X F, et al. Characteristics and its influencing factors of sap flow of apple trees during growth period in the Loess Plateau. Agricultural Research in the Arid Areas, 2023, 41 (4): 267- 274, 288. | |
冯永建, 马长明, 王彦辉, 等. 华北落叶松人工林蒸腾特征及其与土壤水势的关系. 中国水土保持科学, 2010, 8 (1): 93- 98.
doi: 10.3969/j.issn.1672-3007.2010.01.017 |
|
Feng Y J, Ma C M, Wang Y H, et al. Relationship between the characteristics of transpiration of Larix pricipi-rupprechtii forest and soil water potential. Science of Soil and Water Conservation, 2010, 8 (1): 93- 98.
doi: 10.3969/j.issn.1672-3007.2010.01.017 |
|
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017, 72 (5): 863- 874.
doi: 10.11821/dlxb201705008 |
|
Gao H D, Pang G W, Li Z B et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017, 72 (5): 863- 874.
doi: 10.11821/dlxb201705008 |
|
韩新生, 王彦辉, 李振华, 等. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子. 林业科学, 2019, 55 (9): 11- 21. | |
Han X S, Wang Y H, Li Z H et al. Daily forest floor evapotranspiration of Larix principis-rupprechtii plantation and its influencing factors in the semi-arid area of Liupan Mountains. Scientia Silvae Sinicae, 2019, 55 (9): 11- 21. | |
李滨勇, 陈海滨, 唐海萍. 基于AHP 和模糊综合评判法的北疆各地州生态脆弱性评价. 北京师范大学学报(自然科学版), 2010, 46 (2): 197- 201. | |
Li B Y, Chen H B, Tang H P. Assessing ecological fragility with AHP and fuzzy integrated evaluation in autonomous prefectures of northern Xinjiang. Journal of Beijing Normal University (Natural Science), 2010, 46 (2): 197- 201. | |
李振华. 2014. 六盘山叠叠沟典型植被蒸散及水文要素的坡面尺度效应. 北京: 中国林业科学研究院. | |
Li Z H. 2014. The evapotranspiration of typical vegetation and the scale effect of the hydrologic features in slopes of Diediegou watershed of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
刘泽彬. 2018. 六盘山坡面华北落叶松林水文影响的时空变化及尺度转换. 北京: 中国林业科学研究院. | |
Liu Z B. 2018. Spatio-temporal variations and scale transition of hydrological impact of Larix principis-ruprechtii plantation on a slope of Liupan Mountains, China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
秦颢萍, 刘泽彬, 郭建斌, 等. 环境和冠层结构对华北落叶松林树干液流的影响. 应用生态学报, 2021, 32 (5): 1681- 1689. | |
Qin H P, Liu Z B, Guo J B, et al. Effects of environment and canopy structure on stem sap flow in a Larix principis-rupprechtii plantation. Chinese Journal of Applied Ecology, 2021, 32 (5): 1681- 1689. | |
尚友贤, 满秀玲, 徐志鹏, 等. 多年冻土区白桦次生林蒸腾特征及其对影响因子的响应. 水土保持学报, 2023, 37 (2): 310- 319. | |
Shang Y X, Man X L, Xu Z P, et al. Transpiration characteristics and its response to influence factors of Betula platyphylla secondary forest in permafrost area. Journal of Soil and Water Conservation, 2023, 37 (2): 310- 319. | |
田 奥. 2019. 六盘山半湿润区华北落叶松人工林的多种功能时空变化与优化管理. 北京: 中国林业科学研究院. | |
Tian A. 2019. The spatio-temporal variation and optimal management of the multiple functions of larch plantation in the semi-humid Liupan Mountains of Northwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
涂立辉. 2020. 六盘山叠叠沟小流域四种典型植物群落的多功能评价. 北京: 中国林业科学研究院. | |
Tu L H. 2020. Multifunctional evaluation of four typical plant communities in Diediegou watershed of Liupan Mountain, China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
万艳芳. 2023. 六盘山华北落叶松人工林蒸腾和生长过程对干旱的响应. 北京: 中国林业科学研究院. | |
Wan Y F. 2023. Responses of transpiration and growth process in larch plantation to drought in the Liupan Mountains, Northwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王亚蕊. 2017. 基于土壤水分植被承载力的叠叠沟小流域植被优化配置. 北京: 中国林业科学研究院. | |
Wang Y R. 2017. Optimal disposition of vegetations based on soil water carrying capacity in Diediegou Catchment. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王艳兵. 2016. 六盘山叠叠沟主要植被类型的水文过程及其坡面变化. 北京: 中国林业科学研究院. | |
Wang Y B. 2016. The hydrological processes of typical vegetation and their slope variations at the Diediegou of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王云霓, 曹恭祥, 王彦辉, 等. 六盘山南侧华北落叶松人工林冠层蒸腾及其影响因子的坡位差异. 应用生态学, 2018, 29 (5): 1503- 1514. | |
Wang Y N, Cao G X, Wang Y H, et al. Canopy transpiration of Larix principis-rupprechtii plantation and its impact factors in different slope locations at the south side of Liupan Mountains, China. Chinese Journal of Applied Ecology, 2018, 29 (5): 1503- 1514. | |
王云霓. 2017. 六盘山南坡典型森林的水文影响及其坡面尺度效应. 北京: 中国林业科学研究院. | |
Wang Y N. 2017. The hydrological impacts of typical forests and their slope scale effects at the south side of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
熊 伟, 王彦辉, 于澎涛, 等. 华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推. 林业科学, 2008, 44 (1): 34- 40.
doi: 10.3321/j.issn:1001-7488.2008.01.006 |
|
Xiong W, Wang Y H, Yu P T, et al. Variation of sap flow among individual trees and scaling-up for estimation of transpiration of Larix principis-rupprechtii Stand. Scientia Silvae Sinicae, 2008, 44 (1): 34- 40.
doi: 10.3321/j.issn:1001-7488.2008.01.006 |
|
Allen R G, Pereira, L S, Raes D, et al. 1998. Crop evapotranspiration– guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. 56. | |
Attia Z, Domec J C, Oren R, et al. Growth and physiological responses of isohydric and anisohydric poplars to drought. Journal of Experimental Botany, 2015, 66 (14): 4373- 4381.
doi: 10.1093/jxb/erv195 |
|
Chang X X, Zhao W Z, Liu H, et al. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 2014, 198/199, 209- 220.
doi: 10.1016/j.agrformet.2014.08.015 |
|
Duan H L, Duursma R A, Huang G M, et al. 2014. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant, Cell & Environment. 37(7): 1598–1613. | |
Forner A, Aranda I, Granier A, et al. Differential impact of the most extreme drought event over the last half century on growth and sap flow in two coexisting Mediterranean trees. Plant Ecology, 2014, 215 (7): 703- 719.
doi: 10.1007/s11258-014-0351-x |
|
Fried J S, Torn M S, Mills E. The impact of climate change on wildfire severity: a regional forecast for northern California. Climatic Change, 2004, 64 (1/2): 169- 191.
doi: 10.1023/B:CLIM.0000024667.89579.ed |
|
Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 2000, 100 (4): 291- 308.
doi: 10.1016/S0168-1923(99)00151-3 |
|
Granier A, Bréda N. 1996. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Annales des Sciences Forestières 53(2): 537–546. | |
Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology. 3(4): 309–320. | |
Hawthorne S, Miniat C F. Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology, 2018, 11 (1): e1825.
doi: 10.1002/eco.1825 |
|
Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1976, 273 (927): 593- 610. | |
Knutti R, Rogelj J, Plattner G-K, et al. 2013. IPCC. Climate change 2013: the physical science basis. contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK; New York, NY, USA: Cambridge University Press. | |
Kohnke H, Dreibelbis F R, Davidson J M, et al. 1940. A survey and discussion of lysimeters and a bibliography on their construction and performance. Washington, D. C. USA: U. S. Department of Agriculture, 372. | |
Kumagai T, Aoki S, Shimizu T, et al. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed. Tree Physiology, 2007, 27 (2): 161- 168.
doi: 10.1093/treephys/27.2.161 |
|
Kume T, Tsuruta K, Komatsu H, et al. Differences in sap flux-based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology, 2016, 9 (6): 1105- 1116.
doi: 10.1002/eco.1709 |
|
Kunert N, Schwendenmann L, Hölscher D. Seasonal dynamics of tree sap flux and water use in nine species in Panamanian forest plantations. Agricultural and Forest Meteorology, 2010, 150 (3): 411- 419.
doi: 10.1016/j.agrformet.2010.01.006 |
|
Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agricultural and Forest Meteorology, 2002, 112 (2): 67- 85.
doi: 10.1016/S0168-1923(02)00060-6 |
|
Liu B B, Yu P T, Zhang X, et al. 2022. Transpiration sensitivity to drought in Quercus wutaishansea Mary forests on shady and sunny slopes in the Liupan Mountains, northwestern China. Forests 13(12): 1999. | |
Llorens P, Poyatos R, Latron J, et al. A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean mountain conditions. Hydrological Processes, 2010, 24 (21): 3053- 3064.
doi: 10.1002/hyp.7720 |
|
Martin-StPaul N, Delzon S, Cochard H. Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 2017, 20 (11): 1437- 1447.
doi: 10.1111/ele.12851 |
|
McCarthy H R, Pataki D E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosystems, 2010, 13 (4): 393- 414.
doi: 10.1007/s11252-010-0127-6 |
|
Metzen D, Sheridan G J, Benyon R G, et al. Spatio-temporal transpiration patterns reflect vegetation structure in complex upland terrain. Science of the Total Environment, 2019, 694, 133551.
doi: 10.1016/j.scitotenv.2019.07.357 |
|
Pivovaroff A L, Cook V M W, Santiago L S. 2018. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Plant, Cell & Environment, 41(11): 2617–2626. | |
Shi L, Liu H Y, Xu C Y, et al. Decoupled heatwave-tree growth in large forest patches of Larix sibirica in northern Mongolian Plateau. Agricultural and Forest Meteorology, 2021, 311, 108667.
doi: 10.1016/j.agrformet.2021.108667 |
|
Sperry J S. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology, 2000, 104 (1): 13- 23.
doi: 10.1016/S0168-1923(00)00144-1 |
|
Steppe K, Vandegehuchte M W, Tognetti R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiology, 2015, 35 (4): 341- 345.
doi: 10.1093/treephys/tpv033 |
|
Tian A, Wang Y H, Webb A A, et al. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China. Journal of Hydrology, 2019, 571, 503- 515.
doi: 10.1016/j.jhydrol.2019.02.004 |
|
Tie Q, Hu H C, Tian F Q, et al. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agricultural and Forest Meteorology, 2017, 240/241, 46- 57.
doi: 10.1016/j.agrformet.2017.03.018 |
|
Ungar E D, Rotenberg E, Raz-Yaseef N, et al. Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. Forest Ecology and Management, 2013, 298, 39- 51.
doi: 10.1016/j.foreco.2013.03.003 |
|
van Bavel C H, Nakayama F S, Ehrler W L. Measuring transpiration resistance of leaves. Plant Physiology, 1965, 40 (3): 535- 540.
doi: 10.1104/pp.40.3.535 |
|
Wan Y F, Yu P T, Wang Y H, et al. The variation in water consumption by transpiration of Qinghai spruce among canopy layers in the Qilian Mountains, northwestern China. Forests, 2020, 11 (8): 845.
doi: 10.3390/f11080845 |
|
Wang L, Liu Z B, Guo J B, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture. Forest Ecology and Management, 2021, 481, 118749.
doi: 10.1016/j.foreco.2020.118749 |
|
Wang Y H, Xiong W, Gampe S, et al. A water yield-oriented practical approach for multifunctional forest management and its application in dryland regions of China. Journal of the American Water Resources Association, 2015, 51 (3): 689- 703.
doi: 10.1111/1752-1688.12314 |
|
Wu Y H, Zhao P, Zhou M, et al. Environmental factors driving the transpiration of a Betula platyphylla Sukaczev forest in a semi-arid region in North China during different hydrological years. Forests, 2022, 13 (10): 1729.
doi: 10.3390/f13101729 |
|
Xiong W, Oren R, Wang Y H, et al. 2015. Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought. Tree Physiology 35(5): 470–484. | |
Yu F, Faybishenko B, Hunt A, et al. 2017. A simple model of the variability of soil depths. Water, 9(7): 460. | |
Yu S P, Guo J B, Liu Z B, et al. Assessing the impact of soil moisture on canopy transpiration using a modified Jarvis-Stewart model. Water, 2021, 13 (19): 2720.
doi: 10.3390/w13192720 |
|
Zhou X G, Zhu H G, Wen Y G, et al. Effects of understory management on trade-offs and synergies between biomass carbon stock, plant diversity and timber production in eucalyptus plantations. Forest Ecology and Management, 2018, 410, 164- 173.
doi: 10.1016/j.foreco.2017.11.015 |
[1] | 王巍樾,万艳芳,王冬梅,于澎涛,王彦辉,白雨诗. 六盘山华北落叶松优势木径向生长及主要环境因子的坡向差异[J]. 林业科学, 2025, 61(1): 26-36. |
[2] | 张孝琰,倪晓凤,蔡琼,吉成均. 塞罕坝不同林龄华北落叶松人工林林下植物叶解剖特征及其氮添加响应[J]. 林业科学, 2025, 61(1): 37-46. |
[3] | 谢静,张峰,周泽圆,于海群,韩艺,杨春欣,蒋薇,刘进祖,刘博恩,刘鹤. 北京城市公园人工林生态系统水分利用效率的季节变化[J]. 林业科学, 2024, 60(9): 12-17. |
[4] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[5] | 刘元玺,王丽娜,吴俊文,李世民. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 2024, 60(6): 71-85. |
[6] | 韩新生,许浩,蔡进军,董立国,郭永忠,王月玲,万海霞,安钰. 宁夏黄土区稀疏带状山杏人工林土壤湿度动态与影响因素[J]. 林业科学, 2024, 60(4): 79-90. |
[7] | 周凡博,刘玉民,刘亚敏,代崇雯,高琦,张钰林,朱娅婷. 外源茉莉酸甲酯对红椿苗木干旱损伤的缓解作用及生理机制[J]. 林业科学, 2024, 60(12): 58-71. |
[8] | 党宏忠,陈帅,钟鹏,韩辉,张日升,张学利,石长春. 樟子松人工林自然更新过程中断的机制及可能调控途径[J]. 林业科学, 2024, 60(12): 158-167. |
[9] | 李翠侠,孙鹏森,余振,孙美荣,张雷,刘世荣. 西南高山亚高山区植被活动增强对区域蒸散的影响[J]. 林业科学, 2024, 60(11): 1-12. |
[10] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[11] | 田凯欣,许郡元,代莉,李志,耿晓东,刘震,王艳梅. 山桐子幼苗对极端高温和高温干旱复合胁迫的生理响应[J]. 林业科学, 2024, 60(11): 84-92. |
[12] | 张智伟,万艳芳,于澎涛,白雨诗,王彦辉,刘兵兵,王晓,胡振华. 六盘山华北落叶松和白桦林日蒸腾对环境因子的响应差异[J]. 林业科学, 2024, 60(10): 29-39. |
[13] | 柳利利,韩磊,王娜娜,周鹏,马云蕾,马军. 宁夏河东沙区柠条和新疆杨在纯林和混交林中的水分利用策略[J]. 林业科学, 2024, 60(10): 40-49. |
[14] | 乔英,马英杰,辛明亮. 基于REddyProc的干旱区枣林通量数据插补及能量平衡分析[J]. 林业科学, 2023, 59(8): 1-11. |
[15] | 薛盼盼,缪宁,岳喜明,陶琼,张远东,冯秋红,毛康珊. 青藏高原东缘岷江冷杉径向生长对升温响应分异的坡向和海拔差异[J]. 林业科学, 2023, 59(7): 65-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||