林业科学 ›› 2024, Vol. 60 ›› Issue (10): 12-20.doi: 10.11707/j.1001-7488.LYKX20220855
• 研究论文 •
李晓1(),贾淑娴1,席颖青1,杨柳明1,2,刘小飞1,2,*(
)
收稿日期:
2022-12-02
出版日期:
2024-10-25
发布日期:
2024-11-05
通讯作者:
刘小飞
E-mail:li991004@163.com;xfliu@fjnu.edu.cn
基金资助:
Xiao Li1(),Shuxian Jia1,Yingqing Xi1,Liuming Yang1,2,Xiaofei Liu1,2,*(
)
Received:
2022-12-02
Online:
2024-10-25
Published:
2024-11-05
Contact:
Xiaofei Liu
E-mail:li991004@163.com;xfliu@fjnu.edu.cn
摘要:
目的: 研究森林凋落物输入变化对土壤微生物残体碳的影响,为全面认识植物、土壤与微生物间的相互作用对森林长期碳固存的影响提供科学依据。方法: 以亚热带米槠天然林为研究对象,采用随机区组试验设计,设置3种凋落物处理(去除凋落物、双倍凋落物和对照),测定土壤理化性质、氨基糖含量及微生物残体碳含量,采用Pearson 分析和路径分析(PLS-PM)探讨微生物残体碳含量的影响因素。结果: 去除凋落物后,土壤中总氨基糖、氨基葡萄糖、氨基半乳糖和甘露糖胺含量分别降低了14.7%、33.4%、9.3%和16.1%;凋落物添加处理后,甘露糖胺含量降低了21.7%。去除凋落物后,真菌残体碳和总微生物残体碳含量分别降低了16.2%和16.1%,而细菌残体碳含量无显著变化;凋落物添加后,总微生物残体碳含量显著降低了9.2%,但2种处理下微生物残体碳对土壤有机碳的贡献无差异。路径分析表明,凋落物输入变化下的微生物生物量碳、土壤含水量和微生物生物量是驱动土壤微生物残体碳累积的关键因子。结论: 改变凋落物的输入可显著调控土壤微生物残体的积累,尤其是对真菌残体碳的影响较大,而对细菌残体碳的影响较小。凋落物在微生物残体碳积累中具有重要作用,适度维持地表凋落物贮量有助于保持土壤碳库的稳定。
中图分类号:
李晓,贾淑娴,席颖青,杨柳明,刘小飞. 凋落物添加与去除对米槠天然林土壤微生物残体碳的影响[J]. 林业科学, 2024, 60(10): 12-20.
Xiao Li,Shuxian Jia,Yingqing Xi,Liuming Yang,Xiaofei Liu. Effects of Litter Addition and Removal on Soil Microbial Necromass Carbon in a Natural Forest of Castanopsis carlesii[J]. Scientia Silvae Sinicae, 2024, 60(10): 12-20.
表1
样地0~10 cm土层土壤基本理化性质"
样地 Plot | 有机碳储量 Organic carbon storage/(t·hm?2) | 土壤密度 Soil bulk density/(g·cm?3) | 全氮含量 Total nitrogen content/(mg·g?1) | 全磷含量 Total phosphorus content/(mg·g?1) |
对照 Control | 43.89±4.46 | 1.09±0.11 | 2.34±0.56 | 0.48±0.12 |
去除凋落物 Litter removal | 35.47±1.57 | 0.91±0.11 | 2.11±0.55 | 0.46±0.09 |
添加凋落物 Litter addition | 40.24±3.70 | 0.93±0.09 | 2.23±0.37 | 0.51±0.12 |
表2
磷脂脂肪酸特征值标志物"
微生物 Microbial | 磷脂脂肪酸标记物 Phospholipid fatty acid biomarkers |
革兰氏阳性细菌 Gram-positive bacteria | i14:i15:0, a15:i16:i17:0, a17:0 |
革兰氏阴性细菌 Gram-negative bacteria | 16:1ω9c, 16:1ω7c, cy17:0,18:1ω7c, 18:1ω5c, cy19:0 |
真菌 Fungi | 18:1ω9c, 18:2ω6c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1ω5c |
放线菌Actinomyces | 10Me16:0, 10Me17:0, 10Me18:0 |
图2
不同凋落物处理微生物残体碳含量及其对土壤有机碳的贡献率 FNC:真菌残体碳;BNC:细菌残体碳;TNC:真菌残体碳与细菌残体碳之和。不同小写字母表示处理间差异显著(P < 0.05)。FNC: Fungi necromass carbon;BNC: Bacteria necromass carbon;TNC: Sum of fungal necromass carbon and bacterial necromass carbon。Different lowercase letters indicate significant difference among different treatments (P < 0.05)."
表3
不同凋落物处理对土壤理化性质的影响①"
处理 Treatment | 对照 Control | 去除凋落物 Litter removal | 添加凋落物 Litter addition |
含水量Soil water content(%) | 0.27±0.02a | 0.22±0.00b | 0.24±0.01ab |
pH | 4.19±0.17 | 4.34±0.03 | 4.30±0.01 |
土壤有机碳含量Soil organic carbon content/(g·kg?1) | 24.98±2.60 | 21.21±0.80 | 22.84±2.7 |
全氮含量Total nitrogen content/(g·kg?1) | 1.67±0.18 | 1.38±0.09 | 1.46±0.10 |
碳氮比Carbon to nitrogen ratio | 14.94±0.09 | 15.40±0.47 | 15.56±0.82 |
可溶性有机碳含量Dissolved organic carbon content/(mg·kg?1) | 124.20±13.78a | 67.39±0.98b | 117.05±3.94a |
可溶性有机氮含量Dissolved organic nitrogen content/ (mg·kg?1) | 9.61±0.58a | 4.85±1.67b | 4.21±0.57b |
微生物生物量碳含量Microbial biomass carbon content/(mg·kg-1) | 440.50±45.44a | 313.62±32.41b | 437.89±39.05a |
铵态氮含量NH4+-N content/(mg·kg?1) | 26.70±6.42 | 18.74±3.15 | 22.23±3.32 |
硝态氮含量NO3?-N content/(mg·kg?1) | 4.80±0.29b | 5.85±0.30a | 2.85±0.50c |
表4
凋落物处理对微生物群落结构的影响①"
处理 Treatment | 对照 Control | 去除凋落物 Litter removal | 添加凋落物 Litter addition |
革兰氏阳性菌Gram-positive bacteria/(nmol·g?1) | 6.55±0.15a | 4.58±0.82b | 5.09±0.54ab |
革兰氏阴性菌Gram-negative bacteria/(nmol·g?1) | 6.12±0.21a | 4.52±0.68b | 5.53±0.47ab |
革兰氏阳性菌与革兰氏阴性菌比 Gram-positive bacteria/Gram-negative bacteria | 1.07±0.01 | 0.90±0.13 | 0.92±0.02 |
真菌Fungi/(nmol·g?1) | 2.74±0.27a | 1.81±0.30b | 2.53±0.27a |
真菌与细菌比Fungi/Bacteria | 0.22±0.03 | 0.21±0.02 | 0.24±0.00 |
丛枝真菌Arbuscular mycorrhizal fungi/(nmol·g?1) | 0.40±0.01a | 0.21±0.07b | 0.30±0.01b |
放线菌Actinomyces/(nmol·g?1) | 3.06±0.57 | 2.11±0.50 | 2.39±0.39 |
总微生物生物量Total-PLFAs/(nmol·g?1) | 18.88±0.74a | 12.73±2.39b | 15.84±1.55ab |
陆宇明, 许恩兰, 吴东梅, 等. 凋落物双倍添加和移除对米槠林土壤水解酶活性及其化学计量比的影响. 水土保持学报, 2021, 35 (4): 313- 320. | |
Lu Y M, Xu E L, Wu D M, et al. Effects of double addition or removal of litter on soil hydrolases activities and their stoichiometry in Castanopsis carlesii forest. Journal of Soil and Water Conservation, 2021, 35 (4): 313- 320. | |
庞宗清, 陈伟彬, 苏芳龙, 等. 凋落物和根系输入对南亚热带季风常绿阔叶林土壤养分的影响. 生态学报, 2022, 42 (22): 9143- 9152. | |
Pang Z Q, Chen W N, Su F L, et al. Short-term effects of altered litter and root inputs on soil water-extractable ions in a subtropical monsoon evergreen broadleaf forest, Southern China. Acta Ecologica Sinica, 2022, 42 (22): 9143- 9152. | |
汪景宽, 徐英德, 丁 凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56 (3): 528- 540. | |
Wang J K, Xu Y D, Ding F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 2019, 56 (3): 528- 540. | |
张 彬, 陈 奇, 丁雪丽, 等. 微生物残体在土壤中的积累转化过程与稳定机理研究进展. 土壤学报, 2022, 59 (6): 1479- 1491. | |
Zhang B, Chen Q, Ding X L, et al. Research progress on accumulation, turnover and stabilization of microbial residues in soil. Acta Pedologica Sinica, 2022, 59 (6): 1479- 1491. | |
张 磊, 贾淑娴, 李啸灵, 等. 凋落物和根系输入对亚热带米槠天然林土壤有机碳组分的影响. 水土保持学报, 2021a, 35 (3): 244- 251. | |
Zhang L, Jia S X, Li X L, et al. Effects of litter and root inputs on soil organic carbon fractions in a subtropical natural forest of Castanopsis carlesii. Journal of Soil and Water Conservation, 2021a, 35 (3): 244- 251. | |
张 磊, 贾淑娴, 李啸灵, 等. 改变凋落物和根系输入对米槠天然林土壤微生物群落的影响. 水土保持学报, 2021b, 35 (6): 270- 277. | |
Zhang L, Jia S X, Li X L, et al. Effects of litter and root inputs changing on soil microbial community in a natural Castanopsis carlesii forest. Journal of Soil and Water Conservation, 2021b, 35 (6): 270- 277. | |
Amelung W, Miltner A, Zhang X, et al. Fate of microbial residues during litter decomposition as affected by minerals. Soil Science, 2001, 166 (9): 598- 606.
doi: 10.1097/00010694-200109000-00003 |
|
Appuhn A, Joergensen R G. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 2006a, 38 (5): 1040- 1051.
doi: 10.1016/j.soilbio.2005.09.002 |
|
Appuhn A, Scheller E, Joergensen R G. Relationships between microbial indices in roots and silt loam soils forming a gradient in soil organic matter. Soil Biology and Biochemistry, 2006b, 38 (9): 2557- 2564.
doi: 10.1016/j.soilbio.2006.03.011 |
|
Buckeridge K M, Creamer C, Whitaker J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Functional Ecology, 2022, 36 (6): 1396- 1410.
doi: 10.1111/1365-2435.14014 |
|
Čapek P, Choma M, Tahovská K, et al. Coupling the resource stoichiometry and microbial biomass turnover to predict nutrient mineralization and immobilization in soil. Geoderma, 2021, 385 (1): 114884.
doi: 10.1016/j.geoderma.2020.114884 |
|
Craig M E, Turner B L, Liang C, et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology, 2018, 24 (8): 3317- 3330.
doi: 10.1111/gcb.14132 |
|
Dai W, Peng B, Liu J, et al. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry, 2021, 154 (2): 371- 383.
doi: 10.1007/s10533-021-00792-w |
|
Fang X M, Wang G G, Xu Z J, et al. Litter addition and understory removal influenced soil organic carbon quality and mineral nitrogen supply in a subtropical plantation forest. Plant and Soil, 2021, 460 (1/2): 527- 540.
doi: 10.1007/s11104-020-04787-8 |
|
Feng J Y, Zheng L, Hao Y F, et al. Litter removal exerts greater effects on soil microbial community than understory removal in a subtropical-warm temperate climate transitional forest. Forest Ecology and Management, 2022, 505 (3): 119867.
doi: 10.1016/j.foreco.2021.119867 |
|
Frostegård Å, Tunlid A, BååTh E. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 2011, 43 (8): 1621- 1625.
doi: 10.1016/j.soilbio.2010.11.021 |
|
Guo X W, Luo Z K, Sun, O J. Long-term litter type treatments alter soil carbon composition but not microbial carbon utilization in a mixed pine- oak forest. Biogeochemistry, 2021, 152 (2): 327- 343.
doi: 10.1007/s10533-021-00757-z |
|
Huang Y, Liang C, Duan X W, et al. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma, 2019, 353 (21): 340- 346.
doi: 10.1016/j.geoderma.2019.07.028 |
|
Jackson R B, Lajtha K, Crow S E, et al. 2017. The Ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48(1): 419-445. | |
Joergensen R G. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biology and Biochemistry, 1996, 28 (1): 33- 37.
doi: 10.1016/0038-0717(95)00101-8 |
|
Joergensen R G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54 (5): 559- 568.
doi: 10.1007/s00374-018-1288-3 |
|
Joergensen R G, Wichern F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry, 2008, 40 (12): 2977- 2991.
doi: 10.1016/j.soilbio.2008.08.017 |
|
Lajtha K, Kimberly L, Townsend M G, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystem. Biogeochemistry, 2014, 119 (1−3): 341- 360.
doi: 10.1007/s10533-014-9970-5 |
|
Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25, 3578- 3590.
doi: 10.1111/gcb.14781 |
|
Liang C, Balser T C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 2011, 9 (1): 75. | |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2 (8): 17105.
doi: 10.1038/nmicrobiol.2017.105 |
|
Lin K M, Lyu M K, Jiang M H, et al. Improved allometric equations for estimating biomass of the three Castanopsis carlesii H. forest types in subtropical China. New Forests, 2017, 48 (1): 115- 135.
doi: 10.1007/s11056-016-9559-z |
|
Liu X F, Lin T C, Vadeboncoeur M A, et al. Root litter inputs exert greater influence over soil C than does aboveground litter in a subtropical natural forest. Plant and Soil, 2019, 444 (11): 489- 499.
doi: 10.1007/s11104-019-04294-5 |
|
Ma L X, Ju Z Q, Fang Y Y, et al. Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems. Soil Biology and Biochemistry, 2022, 170 (7): 108693.
doi: 10.1016/j.soilbio.2022.108693 |
|
Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world's forests. Science, 2011, 333 (6046): 988- 93.
doi: 10.1126/science.1201609 |
|
Peng Y, Song S Y, Li Z Y, et al. Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology and Biochemistry, 2020, 142 (3): 107694.
doi: 10.1016/j.soilbio.2019.107694 |
|
Riggs C E, Hobbie S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 2016, 99 (8): 54- 65.
doi: 10.1016/j.soilbio.2016.04.023 |
|
Sayer E J, Heard M S, Grant H K, et al. Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change, 2011, 1 (6): 304- 307.
doi: 10.1038/nclimate1190 |
|
Shao S, Zhao Y, Zhang W, et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology and Biochemistry, 2017, 114 (11): 114- 120.
doi: 10.1016/j.soilbio.2017.07.007 |
|
Simpson A J, Simpson M J, Smith E, et al. 2007. Microbially derived inputs to soil organic matter: are current estimates too low? Environmental Science and Technology, 41(23): 8070−8076. | |
Six J, Frey S D, Thiet R K, et al. 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal. 70(2): 555−569. | |
Van Groenigen K J, Bloem J, BååTh E, et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology and Biochemistry, 2010, 42 (1): 48- 55.
doi: 10.1016/j.soilbio.2009.09.023 |
|
Wan S Z, Fu S L, Zhang C L, et al. Effects of understory removal and litter addition on leaf and twig decomposition in a subtropical Chinese fir plantation. Land Degradation and Development, 2021, 32 (17): 5004- 5011.
doi: 10.1002/ldr.4086 |
|
Wan X H, Huang Z Q, He Z M, et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil, 2015, 387 (1/2): 103- 116.
doi: 10.1007/s11104-014-2277-4 |
|
Wang B R, Liang C, Yao H J, et al. The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration. Catena, 2021a, 207 (12): 105622.
doi: 10.1016/j.catena.2021.105622 |
|
Wang Q C, Yang L M, Song G, et al. The accumulation of microbial residues and plant lignin phenols are more influenced by fertilization in young than mature subtropical forests. Forest Ecology and Management, 2022, 509 (7): 120074.
doi: 10.1016/j.foreco.2022.120074 |
|
Wang X, Dai W W, Trf D, et al. Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry, 2021b, 161 (10): 108381.
doi: 10.1016/j.soilbio.2021.108381 |
|
Yang L M, Chen L S, Li Y, et al. Conversion of natural evergreen broadleaved forests decreases soil organic carbon but Increases the relative contribution of microbial residue in Subtropical China. Forests, 2019, 10 (6): 468- 468.
doi: 10.3390/f10060468 |
|
Zhang X D, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28 (9): 1201- 1206.
doi: 10.1016/0038-0717(96)00117-4 |
[1] | 杨阳,王宝荣,孙慧,周媛媛,乔江波,宋怡,张萍萍,李自民,王云强,安韶山. 地球关键带土壤微生物介导有机碳转化研究进展[J]. 林业科学, 2024, 60(7): 165-174. |
[2] | 白雪娟,翟国庆,刘敬泽. 13C稳定同位素在陆地生态系统植物-微生物-土壤碳循环中的应用[J]. 林业科学, 2024, 60(7): 175-190. |
[3] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[4] | 韩新生,刘广全,许浩,董立国,郭永忠,安钰,万海霞,王月玲. 宁夏黄土区典型坡面表层土壤有机碳含量的空间变化特征及尺度效应[J]. 林业科学, 2024, 60(1): 19-31. |
[5] | 崔朝伟,彭丽鸿,马东旭,王佳琪,江祥庆,江先桂,马祥庆,林开敏. 间伐对杉木人工林土壤微生物残体碳的影响[J]. 林业科学, 2023, 59(5): 41-52. |
[6] | 游巍斌,李颖,周艳,何东进. 武夷山国家公园马尾松林改为茶园后影响表层土壤碳含量的林缘效应[J]. 林业科学, 2023, 59(10): 41-49. |
[7] | 杨静,张耀艺,谭思懿,廖姝,王定一,岳楷,倪祥银,吴福忠,杨玉盛. 中亚热带不同树种对土壤团聚体组成及其碳、氮含量的影响[J]. 林业科学, 2022, 58(4): 51-61. |
[8] | 武盼盼,曾利剑,雷平,胡丹丹,李锦隆,王满堂,钟全林. 江西武夷山南方铁杉林主要树种叶片养分含量及再吸收效率[J]. 林业科学, 2022, 58(1): 12-21. |
[9] | 高艳丽,杨智杰,张丽,熊德成. 不同更新方式对亚热带常绿阔叶林土壤氮矿化的影响[J]. 林业科学, 2021, 57(4): 24-31. |
[10] | 白云星,周运超,张薰元,杜姣姣. 马尾松针阔混交人工林凋落物和土壤水源涵养能力[J]. 林业科学, 2021, 57(11): 24-36. |
[11] | 刘静如,曹艺,李晗,张丽,游成铭,徐振锋,谭波. 四川低山丘陵区香樟和马尾松凋落叶分解进程中土壤节肢动物多样性[J]. 林业科学, 2021, 57(11): 119-133. |
[12] | 李春干,李振. 机载激光雷达大区域亚热带森林参数估测的普适性模型式[J]. 林业科学, 2021, 57(10): 23-35. |
[13] | 田奥,王加国,韩振诚,吴佳伟,李苇洁. 百里杜鹃林区马缨杜鹃凋落物花叶混合比例对分解的影响[J]. 林业科学, 2020, 56(8): 1-10. |
[14] | 王晓荣,雷蕾,付甜,潘磊,曾立雄,肖文发. 抚育择伐对马尾松林凋落叶分解速率和养分释放的短期影响[J]. 林业科学, 2020, 56(4): 12-21. |
[15] | 胡海清,罗碧珍,罗斯生,魏书精,王振师,李小川,刘菲. 林火干扰对森林生态系统碳库的影响研究进展[J]. 林业科学, 2020, 56(4): 160-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||