|
孔祥培, 张蒙悦, 丁兆军. 柳暗花明: 胞外生长素信号感受的新突破. 植物学报, 2023, 58 (6): 861- 865.
doi: 10.11983/CBB23149
|
|
Kong X P, Zhang M Y, Ding Z J. There is a way out-new breakthroughs in extracellular auxin sensing. Journal of Integrative Plant Biology, 2023, 58 (6): 861- 865.
doi: 10.11983/CBB23149
|
|
马 军, 徐通达. 植物非经典生长素信号转导通路解析. 生物技术通报, 2020, 36 (7): 15- 22.
|
|
Ma J, Xu T D. Non-canonical auxin signaling pathway in plants. Biotechnology Bulletin, 2020, 36 (7): 15- 22.
|
|
左雯腾, 孟佳慧, 卢孟柱, 等. 银腺杨生长素受体基因PagFBL3对茎生长发育的影响. 林业科学, 2023, 59 (11): 59- 67.
doi: 10.11707/j.1001-7488.LYKX20230198
|
|
Zuo W T, Meng J H, Lu M Z, et al. Effects of PagFBL3 gene on stem growth and development of Populus alba × P. glandulosa. Scientia Silvae Sinicae, 2023, 59 (11): 59- 67.
doi: 10.11707/j.1001-7488.LYKX20230198
|
|
舒文波, 赵树堂, 章晶晶, 等. 超量表达FBL1对84K杨根系和生长量影响研究. 林业科学研究, 2015, 28 (6): 871- 876.
doi: 10.3969/j.issn.1001-1498.2015.06.017
|
|
Shu W B, Zhao S T, Zhang J J, et al. Overexpressing FBL1 receptor led to root formation and growth of Populus alba × P. glandulosa cl. ‘84K’. Forest Research, 2015, 28 (6): 871- 876.
doi: 10.3969/j.issn.1001-1498.2015.06.017
|
|
徐慧芳, 陈 栩. 生长素研究现状及其在大豆育种中的应用. 中国科学: 生命科学, 2024, 54 (2): 247- 259.
doi: 10.1360/SSV-2023-0069
|
|
Xu H F, Chen X. Current opinions on auxin research and its application in soybean breeding. Scientia Sinica Vitae, 2024, 54 (2): 247- 259.
doi: 10.1360/SSV-2023-0069
|
|
张琦琦. 2024. ‘84K’杨内生菌脱菌体系及PagTMK家族部分形成层高表达基因功能研究. 武汉: 华中农业大学.
|
|
Zhang Q Q. 2024. Endophytes debacterization system and functional study of some cambium high-expression genes in the PagTMK family of '84K'. Wuhan: Huazhong Agriculture University. [in Chinese]
|
|
Björklund S, Antti H, Uddestrand I, et al. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant Journal, 2007, 52 (3): 499- 511.
doi: 10.1111/j.1365-313X.2007.03250.x
|
|
Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature, 2019, 568 (7751): 240- 243.
doi: 10.1038/s41586-019-1069-7
|
|
Chang C, Schaller G E, Patterson S E, et al. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell, 1992, 4 (10): 1263- 1271.
|
|
Chen Y R, Yordanov Y S, Ma C, et al. DR5 as a reporter system to study auxin response in Populus. Plant Cell Reports, 2013, 32 (3): 453- 463.
doi: 10.1007/s00299-012-1378-x
|
|
Cohen J D, Strader L C. An auxin research odyssey: 1989-2023. Plant Cell, 2024, 36 (5): 1410- 1428.
doi: 10.1093/plcell/koae054
|
|
Dai N, Wang W Y, Patterson S E, et al. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One, 2013, 8 (4): e60990.
doi: 10.1371/journal.pone.0060990
|
|
Friml J, Gallei M, Gelová Z, et al. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature, 2022, 609 (7927): 575- 581.
doi: 10.1038/s41586-022-05187-x
|
|
Heidstra R. Asymmetric cell division in plant development. Progress in Molecular and Subcellular Biology, 2007, 45, 1- 37.
|
|
Huang R F, Zheng R, He J, et al. Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (42): 21285- 21290.
|
|
Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435 (7041): 446- 451.
doi: 10.1038/nature03542
|
|
Li L X, Verstraeten I, Roosjen M, et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599 (7884): 273- 277.
doi: 10.1038/s41586-021-04037-6
|
|
Lin W W, Zhou X, Tang W X, et al. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature, 2021, 599 (7884): 278- 282.
doi: 10.1038/s41586-021-03976-4
|
|
Marques-Bueno M M, Armengot L, Noack L C, et al. Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism. Current Biology, 2021, 31 (1): 228- 237.
doi: 10.1016/j.cub.2020.10.011
|
|
Nilsson J, Karlberg A, Antti H, et al. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell, 2008, 20 (4): 843- 855.
doi: 10.1105/tpc.107.055798
|
|
Petrasek J, Friml J. Auxin transport routes in plant development. Development, 2009, 136 (16): 2675- 2688.
doi: 10.1242/dev.030353
|
|
Qiu D Y, Bai S L, Ma J C, et al. The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Research: an international journal for rapid publication of reports on genes and genomes, 2019, 26 (5): 423- 431.
doi: 10.1093/dnares/dsz020
|
|
Shu W B, Liu Y L, Guo Y H, et al. A Populus TIR1 gene family survey reveals differential expression patterns and responses to 1-naphthaleneacetic acid and stress treatments. Frontiers in Plant Science, 2015, 6, 719.
doi: 10.3389/fpls.2015.00719
|
|
Shu W B, Zhou H J, Jiang C, et al. The auxin receptor TIR1 homolog (PagFBL1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnology Journal, 2019, 17 (2): 338- 349.
doi: 10.1111/pbi.12980
|
|
Wang Q, Qin G C, Cao M, et al. 2020. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nature Communications, 11(1): 679.
|
|
Xu C Z, Shen Y, He F, et al. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytologist, 2019, 222 (2): 752- 767.
doi: 10.1111/nph.15658
|
|
Yang J, He H, He Y M, et al. 2021. TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 118(24): e2102544118.
|
|
Yu Z P, Zhang F, Friml J, et al. Auxin signaling: research advances over the past 30 years. Journal of Integrative Plant Biology, 2022, 64 (2): 371- 392.
doi: 10.1111/jipb.13225
|