欢迎访问林业科学,今天是

林业科学 ›› 2020, Vol. 56 ›› Issue (11): 73-86.doi: 10.11707/j.1001-7488.20201108

• 论文与研究报告 • 上一篇    下一篇

油松幼树树高生长预测的不确定性贝叶斯分析

王彬,田相林,曹田健*   

  1. 西北农林科技大学林学院 生态仿真优化实验室 杨凌 712100
  • 收稿日期:2020-01-16 出版日期:2020-11-25 发布日期:2020-12-30
  • 通讯作者: 曹田健
  • 基金资助:
    国家自然科学基金面上项目"混交林更新与枯损不确定性随机过程建模"(31670646)

Uncertainty Analysis of Height Predictions for Young Pinus tabulaeformis Using a Bayesian Approach

Bin Wang,Xianglin Tian,Tianjian Cao*   

  1. Simulation Optimization Laboratory College of Forestry, Northwest A&F University Yangling 712100
  • Received:2020-01-16 Online:2020-11-25 Published:2020-12-30
  • Contact: Tianjian Cao

摘要:

目的: 以秦岭松栎林地带性树种油松幼树为研究对象,构建幼树树高生长模型,分析模型预测的不确定性来源,明确模型参数对模型预测不确定性的贡献程度,为提高幼树树高生长建模的可靠性提供理论依据。方法: 收集秦岭松栎林中132株油松幼树连年生长量信息,构建油松幼树树高5年生长量贝叶斯预测模型,采用马尔可夫链蒙特卡洛抽样方法估计模型参数的联合后验分布,量化模型预测时模型预测误差的不确定性、输入变量(自变量测量误差)的不确定性和模型参数的不确定性。结合贝叶斯统计框架与Sobol全局敏感性分析技术,从贝叶斯参数后验分布空间中抽样,量化每个参数或参数组合传递给模型输出的不确定性,通过变异系数和贝叶斯95%可信区间宽度评价其对模型输出不确定性的贡献和影响。结果: 1) 油松幼树树高5年生长量模拟中最大不确定性来源是模型预测误差的不确定性,占总体不确定性的51%;其次是模型参数的不确定性,占总体不确定性的43%;不确定性比例最小的是输入变量即自变量(树冠竞争因子、光截留)测量误差的不确定性,占总体不确定性的6%。模型总体预测的不确定性区间包含97%的观测点,可较准确覆盖模型中观测数据的随机误差。2)对油松幼树树高预测不确定性贡献最大的是控制树冠竞争因子的参数,占参数总体不确定性的64.87%;其次是控制立地因子(坡度)和光照因子(光截留)的参数,分别占参数总体不确定性的15.88%和10.02%;控制林木大小(树高)的参数,仅占参数总体不确定性的1.78%;其他参数贡献的不确定性低于1%。参数的相互作用除控制坡度和树冠竞争因子的参数外,其他参数的相互作用对模型输出不确定性的贡献均低于1%。3)贝叶斯MAP(最大后验概率)预测结果表明,油松幼树树高5年生长量与林分树冠竞争因子、光截留和坡度呈负相关,与当前树高呈正相关。结合参数的不确定性分析得出,参数不确定性越高,其控制的变量对模型预测结果的影响越不显著。结论: 油松幼树树高生长预测的不确定性来源复杂,贝叶斯统计框架与Sobol全局敏感性分析结合可量化和解释油松幼树树高生长预测中各种来源的不确定性,并精确到每个参数传递给模型预测不确定性的贡献。这种将不确定性量化分解的方法可为森林生态系统模拟中对数据和模型预测的变异进行量化、解释和模型改进提供新的参考依据。

关键词: 贝叶斯统计, 全局敏感性, 树高生长, 不确定性量化, 油松, 幼树

Abstract:

Objective: This study aimed to propose a theoretical basis for the uncertainty analysis in modeling young tree growth. A height increment model for young Pinus tabulaeformis was built using research inventory data of pine-oak forests in the Qinling Mountains. The effect of uncertainty sources on model predictions was then analyzed by disaggregating the predictive uncertainty into contributions from every single parameter. Method: The height increment model of young P. tabulaeformis was constructed using 132 sampled young trees. The Markov Chain Monte Carlo (MCMC) method was used to obtain the joint posterior distribution of parameters,and to quantify the uncertainty of model outputs,in terms of the uncertainty of prediction error,measurement errors of the inputs and the parametric uncertainty. A combination of Bayesian statistics and global sensitivity analysis (GSA) was used to quantify the uncertainty propagation. The contributions of different parameters to the predictive uncertainty were represented by the variable coefficient (CV,%) and 95% Bayesian credible intervals (B). Result: 1) The largest uncertainty source of model predictions was the random error,accounting for 51% of the total uncertainty. The least uncertainty source was parametric uncertainty,accounting for 43% of total uncertainty. The minimum uncertainty source was the measurement errors of model input,i.e. light interception (LI) and crown competition factor (CCF),accounting for only 6% of total uncertainty. The 95% credible interval of model prediction included 97% of observations,and sufficiently covered the ranges of random errors of observed data. 2) The parameter relating to CCF resulted in the largest contribution to the uncertainty of the predictions,and the propagated uncertainty attributed 64.87% of total parametric uncertainty. Parameters of LI and slope (SL) propagated 15.88% and 10.02% of total parametric uncertainty,respectively. The parameter of height accounted for only 1.78%,and the uncertainty contributed from other parameters was less than 1%. The uncertainty propagated from parametric interaction was less than 1%,except for the parameters relating to CCF and SL. 3) The Bayesian MAP (maximum a posteriori probability estimate) showed that the effects of CCF,LI and SL on the 5-year height increment of young P. tabulaeformis were negative,but positive on tree height. The results revealed that the higher parametric uncertainty,the less effects of corresponding variables on predictions. Conclusion: The uncertainty sources in the predictions of height increment for young P. tabulaeformis were complicated. Bayesian statistics and global sensitivity analysis (GSA) were combined to quantify and explain the uncertainty of young P. tabulaeformis growth by disaggregating the uncertainty into multiple sources. The contribution of each parameter to predictive uncertainty was quantified by sampling from the joint posterior distribution of parameters. Such a Bayesian approach might be capable for the quantification and disaggregation of uncertainty analysis in simulating of forest ecosystem dynamics.

Key words: Bayesian statistics, global sensitivity analysis, height growth, uncertainty quantification, Pinus tabulaeformis, young trees

中图分类号: