|
陈晓军, 叶春江, 吕慧颖, 等. GmHSFA1基因克隆及其过量表达提高转基因大豆的耐热性. 遗传, 2006. 28 (11): 1411- 1420.
|
|
Chen X J , Ye C J , Lü H Y , et al. Cloning of GmHSFA1 gene and its overexpression leading to enhancement of heat tolerance in transgenic soybean. Hereditas, 2006. 28 (11): 1411- 1420.
|
|
胡涛, 张鸽香, 郑福超, 等. 植物盐胁迫响应的研究进展. 分子植物育种, 2018. 16 (9): 264- 273.
|
|
Hu T , Zhang G X , Zheng F C , et al. Research progress in plant salt stress response. Molecular Plant Breeding, 2018. 16 (9): 264- 273.
|
|
Bharti K , Schmidt E , Lyck R , et al. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. The Plant Journal, 2000. 22 (4): 355- 365.
|
|
Chung E , Kim K M , Lee J H . Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. Journal of Genetics and Genomics, 2013. 40 (3): 127- 135.
|
|
Damberger F F , Pelton J G , Harrison C J , et al. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Science, 1994. 3 (10): 1806- 1821.
|
|
Goswami S , Kumar R R , Sharma S K , et al. Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat (Triticum aestivum) grain under the heat stress. Journal of Plant Biochemistry and Biotechnology, 2015. 24 (4): 441- 452.
|
|
Guo J , Wu J , Ji Q , et al. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics and Genomics, 2008. 35 (2): 105- 118.
|
|
Guo M , Lu J P , Zhai Y F , et al. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.).. BMC Plant Biology, 2015. 15 (1): 151.
doi: 10.1186/s12870-015-0512-7
|
|
Hall T A . BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucleic Acids Symp Ser, 1999. 41, 95- 98.
|
|
Hendry G A F , Baker A J M , Ewart C F . Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus L. Acta Botanica Neerlandica, 1992. 41 (3): 271- 281.
|
|
Hossain M A , Bhattacharjee S , Armin S M , et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance:insights from ROS detoxification and scavenging. Frontiers in Plant Science, 2015. 6, 420.
doi: 10.3389/fpls.2015.00420
|
|
Huang X Y , Tao P , Li B Y , et al. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis). Genetics Molecular Research, 2015. 14 (1): 2189- 2204.
|
|
Jain G , Gould K S . Are betalain pigments the functional homologues of anthocyanins in plants. Environmental and Experimental Botany, 2015. 119, 48- 53.
|
|
Kim M , Ahn J W , Jin U H , et al. Activation of the programmed cell death pathway by inhibition of proteasome function in plants. Journal of Biological Chemistry, 2003. 278, 19406- 19415.
|
|
Li F , Zhang H , Zhao H , et al. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnology Journal, 2018. 16 (7): 1311- 1321.
|
|
Lin Y X , Jiang H Y , Chu Z X , et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics, 2011. 12 (1): 76.
doi: 10.1186/1471-2164-12-76
|
|
Liu Z , Wang P , Zhang T , et al. Comprehensive analysis of BpHSP genes and their expression under heat stresses in Betula platyphylla. Environmental and Experimental Botany, 2018. 152, 167- 176.
|
|
Livak K J , Schittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001. 25 (4): 402- 408.
|
|
Mishra S K . In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Development, 2002. 16 (12): 1555- 1567.
|
|
Mittler R . Abiotic stress, the field environment and stress combination. Trends in Plant Science, 2006. 11 (1): 15- 19.
|
|
Perez-Salamo I , Papdi C , Rigo G , et al. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiology, 2014. 165 (1): 319- 334.
|
|
Personat J M , Tejedor-Cano J , Prieto-Dapena P , et al. Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC Plant Biology, 2014. 14 (1): 56.
doi: 10.1186/1471-2229-14-56
|
|
Qin F , Kakimoto M , Sakuma Y , et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 2007. 50 (1): 54- 69.
|
|
Rizhsky L , Liang H , Shuman J , et al. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 2004. 134 (4): 1683- 1696.
|
|
Scharf K D , Heider H , Höhfeld I , et al. The tomato Hsf system:HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology, 1998. 18 (4): 2240- 2251.
|
|
Scharf K D , Rose S , Zott W , et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. The EMBO Jurnal, 1990. 9 (13): 4495- 4501.
|
|
Shim D , Hwang J U , Lee J , et al. Orthologs of the classA4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. The Plant Cell, 2009. 21 (12): 4031- 4043.
|
|
Tamura K , Peterson D , Peterson N , et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011. 28 (10): 2731- 2739.
|
|
Wang J , Sun N , Deng T , et al. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genomics, 2014. 15 (1): 961.
doi: 10.1186/1471-2164-15-961
|
|
Zhang J , Jia H , Li J , et al. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar. Scientific Reports, 2016. 6, 30050.
doi: 10.1038/srep30050
|
|
Zhang T , Zhao Y , Wang Y , et al. Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida. Frontiers in Plant Science, 2018. 9, 1303.
doi: 10.3389/fpls.2018.01303
|
|
Zhang X , Wang L , Meng H , et al. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Molecular Biology, 2011. 75, 365- 378.
|
|
Zhang Y , Wang Y , Wang C . Gene overexpression and gene silencing in birch using an Agrobacterium-mediated transient expression system. Molecular Biology Reports, 2012. 39, 5537- 5541.
|
|
Zhou S , Zhang P , Jing Z , et al. Genome-wide identification and analysis of heat shock transcription factor family in cucumber (Cucumis sativus L.). Plant Omics:Journal of Plant Molecular Biology and Omics, 2013. 6 (6): 449- 455.
|