鲍甫成, 江泽慧. 1998.中国主要人工林树种木材力学性质.北京:中国林业出版社,172-181.
沈观林, 胡更开. 2006. 复合材料力学. 北京: 清华大学出版社, 66-69.
(Shen G L, Hu G K. 2006. Mechanics of Composite Materials. Beijing: Tsinghua University Press, 66-69. [in Chinese] )
吴燕, 周定国, 王思群, 等. 2009. 木材微纤丝角和密度与弹性模量的关系. 南京林业大学学报: 自然科学版, 33(4): 113-116.
(Wu Y, Zhou D G, Wang S Q, et al. 2009. Relationship of wood MFA and density with elastic modulus. Journal of Nanjing Forestry University: Natural Sciences Edition, 33(4): 113-116. [in Chinese] )
王朝晖, 任海青, 骆秀琴, 等. 2009. 落叶松规格材机械应力分等方法的研究. 木材工业, 23(3): 1-4.
(Wang C H, Ren H Q, Luo X Q, et al. 2009. Mechanical stress grading of larch dimension lumber from northeastern China. China Wood Industry, 23(3): 1-4. [in Chinese] )
邢新婷, 邵亚丽, 安珍,等. 2012. 日本落叶松无性系管胞力学性质的遗传变异. 林业科学研究, 25(4): 510-515.
(Xing X T, Shao Y L, An Z, et al. 2012. A study on the genetic variation in the mechanical properties of single Tracheids of Japanese Larix. Forest Research, 25(4): 510-515. [in Chinese] )
姚胜, 蒲俊文. 2009. 近红外光谱分析技术在木材材性分析中的研究进展. 光谱学与光谱分析, 29(4):974-978.
(Yao S, Pu J W. 2009. Application of near infrared spectroscopy in analysis of wood properties. Spectroscopy and Spectral Analysis, 29(4):974-978. [in Chinese] )
尹思慈. 1996. 木材学. 北京: 中国林业出版社, 25,162-163.
余雁, 费本华, 张波. 2006. 零距拉伸技术评价木材管胞纵向抗拉强度. 林业科学, 42(7): 81-85.
(Yu Y, Fei B H, Zhang B. 2006. Estimation of longitudinal tensile strength of tracheids with zero-span tension technique. Scientia Silvae Sinicae, 42(7): 81-85. [in Chinese] )
张淑琴, 费本华, 余雁, 等. 2012. 杉木木材纵向弹性模量二元预测模型的构建. 北京林业大学学报, 34(1): 123-126.
(Zhang S Q, Fei B H, Yu Y, et al. 2012. Constructing a two-variable model for predicting longitudinal MOE of wood:a case study on Chinese fir wood. Journal of Beijing Forestry University, 34(1): 123-126. [in Chinese] )
Bodig J, Jayne B A. 1982. Mechanics of wood and wood composites. Florida: Kreiger Pulishing Company, 100-108, 350-357.
Cramer S, Kretschmann D, Lakes R, et al. 2005. Earlywood and latewood elastic properties in loblolly pine. Holzforschung, 59(5):531-538.
Daniel P H, Jone N L. 2007. Modeling wood strands as multi-layer composites: bending and tension loads. Wood and Fiber Science, 39(4): 515-526.
Donaldson L. 2008. Microfibril angle: Measurement, variation and relationship-a Review. IAWA Journal, 29(4): 345-386.
Donaldson L. 1992. Within-and between-tree variation in microfibril angle in Pinus radiata.Forestry Science, 22:77-86.
Fukunaga D, Matsumura J, Oda K. 2005. Microfibril angles in the S2 layer of tracheids in root and stem wood of Chamaecyparis obtusa. Prediction of microfibril angle of mature wood in the stem from root wood. Mokuza Gakkaishi, 51: 141-145.
Hofstetter K, Hellmich C, Eberhardsteiner J. 2005. Development and experimental validation of a continuum micromechanics model for the elasticity of wood. European Journal of Mechanics-A Solid, 24(6): 1030-1053.
Jeong G Y, Zink-Sharp A, Hindman P D. 2009. Tensile properties of earlywood and latewood from loblolly pine(Pinus taeda)using digital image correlation. Wood and Fiber Science, 41(1): 51-63.
Jordan L, Daniels R F, Clark III.2005. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood micriofibril angle. Forestry Science, 51(4):357-371.
Majano A, Fernandez J L,Cabo S, et al. 2012. A test method for characterizing clear wood using a single specimen. Experimental Mechanics, 52(8):1079-1096.
Mishnaevsky Jr L, Qing H. 2008.Micromechanical modeling of mechanical behavior and strength of wood: state-of-the-art review. Computational Materials Science, 44(2): 363-370.
Qing H, Mishnaevsky Jr L. 2011. A 3D multilevel model of damage and strength of wood: analysis of microstructural effects. Mechanics of Materials, 43(9): 487-495. |