白黎娜,李增元,陈尔学,等. 2003. 干涉测量土地利用影像分类决策树法森林识别研究. 林业科学,39 (1) :86-90.
(Bai L N, Li Z Y, Chen E X, et al. 2003. A study on forest identification with the decision tree for interferometric land-use image. Scientia Silvae Sinicae, 39 (1) :86-90. [in Chinese] )
陈尔学,李增元,车学俭,等. 1999. 星载SAR干涉测量数据用于森林识别的初步研究. 北京: 第五届全国计算机应用联合学术会议.
付仲良,张文元,孟庆祥. 2012. 灰度和纹理特征组合的SAR影像SVM分类. 应用科学学报, 30 (5) :498-504.
(Fu Z L, Zhang W Y, Meng Q X. 2012. SAR image classification based on SVM with fusion of gray scale and texture features. Journal of Applied Sciences, 30 (5) :498-504. [in Chinese] )
郎丰铠,杨 杰,赵 伶,等. 2012. 基于Freeman散射熵和各向异性度的极化SAR影像分类算法研究. 测绘学报,41 (4) :556-562.
(Lang F K, Yang J, Zhao L, et al. 2012. Polarimetric sar data classification with Freeman entropy and anisotropy analysis. Acta Geodaetica et Cartographica Sinica, 41 (4) :556-562. [in Chinese] )
汤井田,胡 丹,龚智敏. 2008. 基于SVM的极化SAR图像分类研究. 遥感技术与应用,23 (3) :341-344.
(Tang J T, Hu D, Gong Z M. 2008. Study of classification by support vector machine on synthetic aperture radar image. Remote Sensing Technology and Application, 23 (3) :341-344. [in Chinese] )
赵英时. 2003. 遥感应用分析原理与方法. 北京: 科学出版社.
Bamler R, Hartl P. 1998. Synthetic aperture radar interferometry. Inverse Problems, 14 (4) :1-54.
Chen Q, Kuang G, Li J, et al. 2013. Unsupervised land cover/land use classification using PolSAR imagery based on scattering similarity. IEEE Transactions on Geoscience and Remote Sensing, 51 (3) :1817-1825.
Kilpi J, Ahola H A, Rauste Y, et al. 2013. Improved mapping of tropical forests with optical and SAR imagery, Part I: forest cover and accuracy assessment using multi-resolution data. Earth Observations and Remote Sensing, 6 (1) :74-91.
Krylov V A, Moser G, Serpico S B, et al. 2011. Supervised high-resolution dual-polarization SAR image classification by finite mixtures and copulas. Selected Topics in Signal Processing, IEEE Journal of, 5 (3) :554-566.
Lee J S, Grunes M R, Ainsworth T, et al. 2005. Forest classification based on L-band polarimetric and interferometric SAR data. Proceedings of the 2nd International Workshop POLINSAR 2005 (ESA SP-586),6.1-6.7.
Liesenberg V, Gloaguen R. 2013. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil. International Journal of Applied Earth Observation and Geoinformation, 21:122-135.
Liu M, Zhang H, Wang C. 2011. Applying the log-cumulants of texture parameter to fully polarimetric SAR classification using support vector machines classifier. Radar (Radar). 2011 IEEE CIE International Conference on, 728-731.
Luo H M, Chen E X, Li X W, et al. 2010. Unsupervised classification of forest from polarimetric interferometric SAR data using fuzzy clustering. Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition, 201-206.
Oliver C, Quegan S. 1998. Understanding synthetic aperture radar images. Norwood: Artech House Inc, 219-222.
Strozzi T, Dammert P B G, Wegmuller U, et al. 2000. Landuse mapping with ERS SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(2) :766-775.
Ulaby F T, Moore R K, Fung A K. 1981. Microwave remote sensing: active and passive, vol.2, radar remote sensing and surface scattering and emission theory.Addison-Wesley, Advanced Book Program, Reading, Massachusetts, 273-284.
Wang S, Liu K, Pei J, et al. 2013. Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio. Geoscience and Remote Sensing, 10(3):622-626. |