高 凯, 谢中兵, 徐苏铁, 等. 2012. 内蒙古锡林河流域羊草草原 15 种植物热值特征. 生态学报, 32(2): 588-594.
(Gao K, Xie Z B, Xu S T, et al. 2012. Characterization of caloric value in fifteen plant species in Leymus chinensis steppe in Xilin River Basin, Inner Mongolia. Acta Ecologica Sinica, 32(2): 588-594.[in Chinese])
郭水良, 黄 华, 晁 柯, 等. 2005. 金华市郊 10 种杂草的热值和灰分含量及其适应意义. 植物研究, 25(4): 460-464.
(Guo S L, Huang H, Chao K, et al. 2005. On caloric values and ash contents of ten weed species in Jinhua suburb and its adaptive significances. Bulletin of Botanical Research, 25(4): 460-464.[in Chinese])
韩蕊莲, 李丽霞, 梁宗锁. 2003. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究. 西北植物学报, 23(1): 23-27.
(Han R L, Li L X, Liang Z S. 2003. Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 23(1): 23-27.[in Chinese])
李 宏, 程 平, 郑朝晖, 等. 2013. 克拉玛依地区主要树种干部热值与碳含量特征分析. 林业科学, 49(9): 29-37.
(Li H, Cheng P, Zheng Z H, et al. 2013. Characteristic analysis on caloric values and carbon contents of dominant trees in Karamay region. Scientia Silvae Sinicae, 49(9): 29-37.[in Chinese])
林光辉, 林 鹏. 1991. 红树植物秋茄热值及其变化的研究. 生态学报, 11(1): 44-48.
(Lin G H, Lin P. 1991. The change of caloric values of a mangrove species, Kandelia candel in China. Acta Ecologica Sinica, 11(1): 44-48.[in Chinese])
刘爱荣, 赵可夫. 2005. 盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用. 植物生理与分子生物学学报, 31(4): 389-395.
(Liu A R, Zhao K F. 2005. Osmotica accumulation and its role in osmotic adjustment in Thellungiella halophila under salt stress. Journal of Plant Physiology and Molecular Biology, 31(4): 389-395.[in Chinese])
刘 灿, 李 宏. 2010. 四种杨属植物的热值及灰分含量的比较. 中南林业科技大学学报: 自然科学版, 30(10): 24-28.
(Liu C, Li H. Comparison of caloric values and ash contents in the four Populus L. species. Journal of Central South University of Forestry & Technology:Natural Science, 30(10): 24-28.[in Chinese])
宋莉英, 彭长连, 彭少麟. 2009. 华南地区 3 种入侵植物与本地植物叶片建成成本的比较. 生物多样性, 17(4): 378-384.
(Song L Y, Peng C L, Peng S L. 2009. Comparison of leaf construction costs between three invasive species and three native species in South China. Biodiversity Science, 17(4): 378-384.[in Chinese])
孙国夫, 郑志明, 王兆骞. 1993. 水稻热值的动态变化研究. 生态学杂志, 12(1): 1-4.
(Sun G F, Zheng Z M, Wang Z Q. 1993. Dynamics of calorific values of rice. Chinese Journal of Ecology, 12(1): 1-4.[in Chinese])
唐炎林, 曹 敏, 唐建维, 等. 2010. 西双版纳热带季节雨林优势植物热值. 生态学杂志, 29(3): 427-433.
(Tang Y L, Cao M, Tang J W, et al. 2010. Caloric values of dominant plant species in Xishuangbanna tropical seasonal rainforest. Chinese Journal of Ecology, 29(3): 427-433.[in Chinese])
王立海, 孙墨珑. 2009. 小兴安岭主要树种热值与碳含量. 生态学报, 29(2): 953-959.
(Wang L H, Sun M L. 2009. Caloric values and carbon contents of dom inant trees in Xiaoxing'anling forest region. Acta Ecologica Sinica, 29(2): 953-959.[in Chinese])
肖 强, 叶文景, 朱 珠, 等. 2005. 利用数码相机和 Photoshop 软件非破坏性测定叶面积的简便方法. 生态学杂志, 24(6): 711-714.
(Xiao Q, Ye W J, Zhu Z, et al. 2005. A simple non-destructive method to measure leaf area using digital camera and Photoshop software. Chinese Journal of Ecology, 24(6): 711-714.[in Chinese])
许景伟, 王卫东, 王月海, 等. 2003. 沿海黑松防护林低产、低质、低效成因的调查报告. 东北林业大学学报, 31(5): 96-98.
(Xu J W, Wang W D, Wang Y H, et al. 2003. Investigation report on the reasons of low-yield, poor-quality, inferior-function of coastal protective forest of Pinus thunbergii Parl. Journal of Northeast Forestry University, 31(5): 96-98.[in Chinese])
张志东, 毛培利, 刘玉虹, 等. 2009. 林分结构对烟台黑松海岸防护林天然更新的影响. 生态学报, 30(8): 2205-2211.
(Zhang Z D, Mao P L, Liu Y H, et al. 2009. Effects of forest structure on natural regeneration of Pinus thunbergii coastal shelter forest in Yantai region. Acta Ecologica Sinica, 30(8): 2205-2211.[in Chinese])
郑朝晖, 马春霞, 马江林, 等. 2011. 俄罗斯杨热值与含碳率特征分析. 河南农业科学, 40(6): 128-131.
(Zheng Z H, Ma C X, Ma J L, et al. 2011. Characteristics analysis of caloric value and carbon contents in Populus russkii. Journal of Henan Agricultural Sciences, 40(6): 128-131.[in Chinese])
Baruch Z, Goldstein G. 1999. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia, 121(2): 183-192.
Daehler C C. 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution and Systematics, 34: 183-211.
De Vries F, Brunsting A, Van Laar H. 1974. Products, requirements and efficiency of biosynthesis a quantitative approach. Journal of Theoretical Biology, 45(2): 339-377.
Feng Y L, Fu G L, Zheng Y L. 2008. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228(3): 383-390.
Fortunel C, Fine P V, Baraloto C. 2012. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional ecology, 26(5): 1153-1161.
Funk J L, Vitousek P M. 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature, 446(7139): 1079-1081.
Garnier E, Salager J L, Laurent G, et al. 1999. Relationships between photosynthesis, nitrogen and leaf structure in 14 grass species and their dependence on the basis of expression. New Phytologist, 143(1): 119-129.
Golley F B. 1961. Energy values of ecological materials. Ecology, 42(3): 581-584.
Golley F B. 1969.Caloric value of wet tropical forest vegetation. Ecology, 50(3): 517-519.
Lin H, Cao M. 2008. Plant energy storage strategy and caloric value. Ecological Modelling, 217(1/2): 132-138.
Matías L, Quero J L, Zamora R, et al. 2012. Evidence for plant traits driving specific drought resistance. A community field experiment. Environmental and Experimental Botany, 81: 55-61.
Mediavilla S, Escudero A, Heilmeier H. 2001. Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree physiology, 21(4): 251-259.
Nagel J M, Griffin K L. 2004. Can gas-exchange characteristics help explain the invasive success of Lythrum salicaria? Biological Invasions, 6(1): 101-111.
Nielsen S L, Enriquez S, Duarte C, et al. 1996. Scaling maximum growth rates across photosynthetic organisms. Functional ecology, 10(2): 167-175.
Osunkoya O O, Bayliss D, Panetta F D, et al. 2010. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species. Annals of botany, 106(2): 371-380.
Ovington J D, Heitkamp D. 1960.The accumulation of energy in forest plantations in Britain. Journal of Ecology, 48(3): 639-46.
Pysek P, Richardson D M. 2007. Traits associated with invasiveness in alien plants: where do we stand? Biological Invasions, 193(3): 97-125.
Shen X Y, Peng S L, Chen B M, et al. 2011. Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biological Invasions, 13(4): 869-881.
Song L Y, Ni G Y, Chen B M, et al. 2007. Energetic cost of leaf construction in the invasive weed Mikania micrantha H.B.K. and its co-occurring species: implications for invasiveness. Botanical Studies, 48(3): 331-338.
Van Kleunen M, Weber E, Fischer M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13(2): 235-245.
Villar R, Merino J. 2001. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytologist, 151(1): 213-226.
Williams K, Percival F, Merino J, et al. 1987. Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell & Environment, 10(9): 725-734. |