Scientia Silvae Sinicae ›› 2026, Vol. 62 ›› Issue (1): 83-94.doi: 10.11707/j.1001-7488.LYKX20240789
• Research papers • Previous Articles Next Articles
Tao Yu1,Liang He1,Wenbin Yang2,Yiben Cheng1,Wei Feng3,Ronglian Qi4,Guohua Liu5,Yanyan Ning6,Yuanyuan Yu5,Wei Li7,*(
)
Received:2024-12-23
Revised:2025-11-02
Online:2026-01-25
Published:2026-01-14
Contact:
Wei Li
E-mail:lw891@caf.ac.cn.E-mail
CLC Number:
Tao Yu,Liang He,Wenbin Yang,Yiben Cheng,Wei Feng,Ronglian Qi,Guohua Liu,Yanyan Ning,Yuanyuan Yu,Wei Li. Characteristics of Deep Percolation and Soil Water Replenishment of Typical Arboreal and Shrub Vegetation in Horqin Sandy Land[J]. Scientia Silvae Sinicae, 2026, 62(1): 83-94.
Table 1
Information of typical arboreal and shrub sand-fixation vegetation plots in Horqin Sandy Land"
| 样地Sample plot | 高度 Height/m | 冠幅 Crown width | 植被类型 Vegetation type | 林龄 Age/a | 微地形 Microrelief | 配置模式 Planting pattern |
| 小叶锦鸡儿固定沙地 Fixed sandy land with Caragana microphylla | 1.47 | 1.3 m×1.1 m | 灌丛 Shrub | 20 | 平缓沙地 Gentle sandy land | 随机分布 Random distribution |
| 新疆杨固定沙地 Fixed sandy land with Populus alba var. pyramidalis | 8.33 | 3.4 m×3.5 m | 乔木 Arboreal vegetation | 15 | 平缓沙地 Gentle sandy land | 单行一带,行距4 m,株距2 m Single-row belt, row spacing 4 m, plant spacing 2 m |
Table 2
Characteristics of typical rainfall events at different levels in Horqin Sandy Land in various hydrological years"
| 降雨特征 Rainfall Characteristics | 湿润年份 2022 Wet year 2022 | 干旱年份 2023 Dry year 2023 | |||||||
| 中雨 Moderate rain | 大雨 Heavy rain | 暴雨 Torrential rain | 特大暴雨 Extraordinary torrential rain | 中雨 Moderate rain | 大雨 Heavy rain | 暴雨 Torrential rain | 特大暴雨 Extraordinary torrential rain | ||
| 开始时间 Start time | 2022–06–22 2:00 | 2022–08–04 18:00 | 2022–08–14 9:00 | 2022–06–23 12:00 | 2023–06–20 0:00 | 2023–09–17 17:00 | 2023–07–13 16:00 | 2023–07–22 9:00 | |
| 结束时间 End time | 2022–06–22 23:00 | 2022–08–05 8:00 | 2022–08–15 13:00 | 2022–06–27 4:00 | 2023–06–20 18:00 | 2023–09–18 1:00 | 2023–07–18 5:00 | 2023–07–23 10:00 | |
| 降雨历时 Duration/h | 16 | 4 | 20 | 27 | 9 | 5 | 25 | 26 | |
| 降雨量 Rainfall/mm | 8.8 | 15 | 29.6 | 73.8 | 7.8 | 18.4 | 20.2 | 77.6 | |
| 平均雨强 Mean intensity/(mm·h?1) | 0.55 | 3.75 | 1.48 | 2.73 | 0.86 | 3.68 | 0.81 | 2.98 | |
| 最大雨强 Max intensity/(mm·h?1) | 1.0 | 11.6 | 5.6 | 14.8 | 1.8 | 16 | 3.8 | 13.6 | |
Table 3
Frequency and cumulative rainfall of rainfall events in Horqin Sandy Land"
| 降雨特征 Rainfall Characteristics | 小雨 Light rain | 中雨 Moderate rain | 大雨 Heavy rain | 暴雨 Torrential rain | 特大暴雨 Extraordinary torrential rain | 总量 Total | |
| 湿润年份 (2022年) Wet year(2022) | 频次 Frequency | 14 | 7 | 5 | 6 | 3 | 35 |
| 频次比例 Proportion(%) | 40.00 | 20.00 | 12.29 | 17.14 | 8.57 | 100.00 | |
| 雨量Precipitation/mm | 16.00 | 51.40 | 69.00 | 163.40 | 191.60 | 491.40 | |
| 雨量比例 Proportion(%) | 3.26 | 10.46 | 14.04 | 33.25 | 38.99 | 100.00 | |
| 干旱年份 (2023年) Dry year(2023) | 频次 Frequency | 24 | 4 | 4 | 3 | 1 | 36 |
| 频次比例 Proportion(%) | 66.67 | 11.11 | 11.11 | 8.33 | 2.78 | 100.00 | |
| 雨量 Precipitation/mm | 34.60 | 28.60 | 53.20 | 62.00 | 77.60 | 256.00 | |
| 雨量比例 Proportion(%) | 13.52 | 11.17 | 20.78 | 24.22 | 30.31 | 100.00 | |
Table 4
Lag time of soil moisture response and cumulative rainfall required for response in mobile sandy lands in different hydrological years"
| 年份 Year | 降雨等级 Rainfall levels | 40 cm土深 40 cm soil depth | 120 cm土深 120 cm soil depth | 200 cm土深 200 cm soil depth | |||||
| 滞后时间 Lag time/h | 响应累计雨量 Response to accumulated rainfall/mm | 滞后时间 Lag time/h | 响应累计雨量 Response to accumulated rainfall/mm | 滞后时间 Lag time/h | 响应累计雨量 Response to accumulated rainfall/mm | ||||
| 湿润 年份 Wet year | 中雨 Moderate rain | — | — | — | — | — | — | ||
| 大雨 Heavy rain | 8 | 14.8 | — | — | — | — | |||
| 暴雨 Torrential rain | 9 | 19.4 | 34 | 29.6 | — | — | |||
| 特大暴雨 Extraordinary torrential rain | 6 | 13.4 | 13 | 59.0 | 18 | 61.6 | |||
| 干旱 年份 Dry year | 中雨 Moderate rain | — | — | — | — | — | — | ||
| 大雨 Heavy rain | 6 | 18 | — | — | — | — | |||
| 暴雨 Torrential rain | 14 | 14.8 | — | — | — | — | |||
| 特大暴雨 Extraordinary torrential rain | 8 | 32 | 13 | 70.4 | 16 | 73.4 | |||
Fig.5
Deep percolation water quantity and its temporal distribution in different sample plots of Horqin Sandy Land c and f denote mobile plot in wet and dry years, respectively. d and g denote sandy land fixed with Caragana microphylla in wet and dry years, respectively. e and h denote sandy land fixed with Populus alba var. pyramidalis in wet and dry years, respectively. MS, CMF, and PBLF is mobile sand, sandy land fixed with Caragana microphylla, and sandy land fixed with Populus alba var. pyramidalis, respectively. Different lower letters represent significant differences at P<0.05. DP denotes deep percolation."
Table 5
Water balance of arbor-shrub sand-fixing vegetation in Horqin Sandy Land"
| 样地 Sample plot | 湿润年份 Wet year | 干旱年份 Dry year | |||||||
| 降雨量 Rainfall/mm | DP/mm | ΔSWS/mm | ET/mm | 降雨量 Rainfall/mm | DP/mm | ΔSWS/mm | ET/mm | ||
| 流动沙地 Mobile sand | 491.4 | 214.0 | 28.21 | 249.19 | 256.0 | 84.6 | 13.97 | 157.43 | |
| 小叶锦鸡儿固定沙地 Sandy land fixed with C. microphylla | 491.4 | 57.0 | 9.1 | 425.3 | 256.0 | 33.2 | 3.2 | 219.6 | |
| 新疆杨固定沙地 Sandy land fixed with P. alba var. pyramidalis | 491.4 | 0 | ?44.6 | 496.0 | 256.0 | 0 | ?49.3 | 265.3 | |
| 程然然. 2020. 黄土丘陵区两典型天然林和人工林生态水文工程研究. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心). | |
| Cheng R R. 2020. Eco-hydrological process in two typical natural forests and artificial forests in the Loess hilly region of China. Beijing: Chinese Academy of Science and Ministry of Education: Research Center of Soil and Water Conservation and Ecological Environment. [in Chinese] | |
| 李 卫, 冯 伟, 杨文斌, 等. 流动沙丘水分深层入渗量与降雨的关系. 水科学进展, 2015, 26 (6): 779- 786. | |
| Li W, Feng W, Yang W B, et al. Relationship between rainfall and deep layer infiltration of mobile dunes in the Mu Us Sandy Land, China. Advances in Water Science, 2015, 26 (6): 779- 786. | |
| 李玉强, 王旭洋, 郑成卓, 等. 科尔沁沙地防沙治沙实践与生态可持续修复浅议. 中国沙漠, 2024, 44 (4): 302- 314. | |
| Li Y Q, Wang X Y, Zheng C Z, et al. The practice on prevention and control of aeolian desertification and suggestion on the ecologically sustainable restoration in the Horqin Sandy Land. Journal of Desert Research, 2024, 44 (4): 302- 314. | |
| 梁 静, 王国梁, 徐肖阳, 等. 2025. 黄土丘陵区柠条人工林土壤水分动态及其对降水的响应. 土壤学报, 62(4): 998−1009. | |
| Liang J, Wang G L, Xu X Y, et al. 2025. Dynamics of soil moisture and its response to rainfall in Caragana korshinskii plantation in loess hilly region. Acta Pedologica Sinica, 62(4): 998−1009. [in Chinese]) | |
| 柳立立, 韩 磊, 王娜娜, 等. 宁夏河东沙区柠条和新疆杨在纯林和混交林中的水分利用策略. 林业科学, 2024, 60 (10): 40- 49. | |
| Liu L L, Han L, Wang N N, et al. Water use strategies of Caragana korshinskii and Populus bolleana in pure and mixed plantations in the eastern sandy land of the Yellow River in Ningxia. Scientia Silvae Sinicae, 2024, 60 (10): 40- 49. | |
| 牛亚毅, 刘 蔚, 董佳蕊, 等. 科尔沁沙地1961–2021年主要气象要素的变化特征: 以奈曼旗为例. 中国沙漠, 2023, 43 (4): 263- 273. | |
| Niu Y Y, Liu W, Dong J R, et al. The variation characteristics of main meteorological factors in Horqin Sandy Land during 1961–2021: a case study of Naiman Banner. Journal of Desert Research, 2023, 43 (4): 263- 273. | |
| 邵明安, 贾小旭, 王云强, 等. 等. 黄土高原土壤干层研究进展与展望. 地球科学进展, 2016, 31 (1): 14- 22. | |
| Shao M A, Jia X X, Wang Y Q, et al. A review of studies on dried soil layers in the Loess Plateau. Advances in Earth Science, 2016, 31 (1): 14- 22. | |
| 佘 榕, 刘子琦, 李 渊, 等. 典型石漠化区不同植被土壤水分对降雨的响应. 森林与环境学报, 2021, 41 (5): 478- 486. | |
| She R, Liu Z Q, Li Y, et al. Response of soil moisture to rainfall in different vegetation types in typical rocky desertification area. Journal of Forest and Environment, 2021, 41 (5): 478- 486. | |
| 孙立博, 余新晓, 陈丽华, 等. 坝上高原杨树人工林的枯落物及土壤水源涵养功能退化. 水土保持学报, 2019, 31 (1): 104- 110. | |
| Sun L B, Yu X X, Chen L H, et al. Degradation of litter and soil water conservation function of poplar plantation in Bashang Plateau. Journal of Soil and Water Conservation, 2019, 31 (1): 104- 110. | |
| 特日格勒, 冯 伟, 杨文斌, 等. 浑善达克沙地土壤水分深层渗漏的动态特征. 水土保持通报, 2022, 41 (1): 77- 82. | |
| Terigele, Feng W, Yang W B, et al. Dynamics characteristic of deep soil water leakage in Otindag Sandy Land. Bulletin of Soil and Water Conservation, 2022, 41 (1): 77- 82. | |
| 王宇祥, 刘廷玺, 段利民, 等. 半干旱地区半流动沙丘水分深层渗漏量及其对降雨格局的响应. 应用生态学报, 2020, 31 (8): 2710- 2720. | |
| Wang Y X, Liu T X, Duan L M, et al. Deep water leakage from semi-mobile dunes in semi-arid regions and its response to rainfall patterns. Chinese Journal of Applied Ecology, 2020, 31 (8): 2710- 2720. | |
| 吴丽丽. 2019. 毛乌素沙地风沙土土壤水分深层渗漏动态特征及其与降雨量的关系研究. 北京: 中国林业科学研究院. | |
| Wu L L. 2019. Study on soil water deep percolation dynamic characteristic and its relationship with rainfall of Mu Us Sand Land. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 吴丽丽, 程一本, 杨文斌, 等. 毛乌素沙地流动沙丘不同深度土壤渗漏特征. 生态学报, 2018, 38 (22): 7960- 7967. | |
| Wu L L, Cheng Y B, Yang W B, et al. Analysis of the soil percolation characteristics at different depths of a mobile sand dune in the Mu Us sandy land. Journal of Desert Research, 2018, 38 (22): 7960- 7967. | |
| 杨文斌, 唐进年, 梁海荣, 等. 2014. 我国典型沙漠(地)流动风沙土的深层渗漏量及动态变化. 中国科学: 地球科学, 44(9): 2052–2061. | |
| Yang W B, Tang J N, Liang H R, et al. 2014. Deep soil water infiltration and its dynamics variation in the shifting sandy land of typical deserts in China. Science China: Earth Sciences, 44(9): 2052–2061. [in Chinese] | |
| 张永旺, 万珊珊, 王 俊, 等. 黄土高原植被演替过程中土壤水分亏缺. 水土保持研究, 2020, 27 (5): 120- 125, 132. | |
| Wang Y W, Wan S S, Wang J, et al. Soil water direct during vegetation succession on the Loess Plateau. Research of Soil and Water, 2020, 27 (5): 120- 125, 132. | |
|
Aouade G, Ezzahar J, Amenzou N, et al. Combining stable isotopes, eddy covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid region. Agricultural Water Management, 2016, 177, 181- 192.
doi: 10.1016/j.agwat.2016.07.021 |
|
|
Cheng Y B, Li X L, Wang Y B, et al. An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons. Agricultural Water Management, 2021, 243, 106488.
doi: 10.1016/j.agwat.2020.106488 |
|
|
Cheng Y B, Zhan H B, Yang W B, et al. Is annual recharge coefficient a valid concept in arid and semi-arid regions?. Hydrology and Earth Sciences, 2017, 21, 5031- 5042.
doi: 10.5194/hess-21-5031-2017 |
|
| Dai J J, Li Y Y, Wang L, 2024. Biological and environmental controls on nighttime water-use behaviors in Populus simonii in semi-arid areas of the Chinese Loess plateau. Agricultural and Forest Meteorology, 346: 109874. | |
|
Fu X L, Shao M A, Wei X R. et al. Effects of monovegetation restoration types on soil water distribution and balance on a hillslope in northern loess plateau of China. Journal of hydrological Engineering, 2013, 18 (4): 413- 421.
doi: 10.1061/(ASCE)HE.1943-5584.0000628 |
|
|
He L, Guo J B, Xiong W, et al. Sand-fixing vegetation regulates deep percolation and soil water dynamics in semiarid sandy land: evidence from a deep percolation recorder and in-situ test. Catena, 2023, 232, 107467.
doi: 10.1016/j.catena.2023.107467 |
|
|
Jin Z, Guo L, Lin H, et al. Soil moisture response to rainfall on the Chinese Loess Plateau after a long-term vegetation rehabilitation. Hydrological Processes, 2018, 32, 1738- 1754.
doi: 10.1002/hyp.13143 |
|
|
Li W, Xiong W, Yang W B, et al. Poplar trees do not always act as a water pump: Evidence from modeling deep drainage in a low-coverage-mode shelterbelt in China. Journal of Hydrology, 2022, 605, 127383.
doi: 10.1016/j.jhydrol.2021.127383 |
|
|
Liang X Y, Xin Z B, Shen H Y, et al. Deep soil water deficit causes Populus simonii Carr degradation in the three north shelterbelt region of China. Journal of Hydrology, 2022, 612, 128201.
doi: 10.1016/j.jhydrol.2022.128201 |
|
|
Liu X P, He Y H, Sun S H, et al. Restoration of sand-stabilizing vegetation reduces deep percolation of precipitation in semi-arid sandy lands, northern China. Catena, 2022, 208, 105728.
doi: 10.1016/j.catena.2021.105728 |
|
|
Liu X P, He Y H, Zhao X Y, et al. The response of soil water and deep percolation under Caragana microphylla to rainfall in the Horqin Sand Land, northern China. Catena, 2016, 139, 82- 91.
doi: 10.1016/j.catena.2015.12.006 |
|
|
Nan G W, Wang N, Jiao L, et al. A new exploration for accurately quantifying the effect of afforestation on soil moisture: a case study of artificial Robinia pseudoacacia in the Loess Plateau (China). Forest Ecology and Management, 2019, 433, 459- 466.
doi: 10.1016/j.foreco.2018.10.029 |
|
| Sampson A A, Wright D B, Stewart R D, et al. The role of rainfall temporal and spatial averaging in seasonal simulations of the terrestrial water balance. Hydrological Processes, 2020, 34 (11): 2531- 2542. | |
|
Scanlon B R, Healy R W, Cook P G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 2002, 10, 18- 39.
doi: 10.1007/s10040-001-0176-2 |
|
|
Schwärzel K, Zhang L L, Montanarella L, et al. How afforestation affects the water cycle in drylands: a process-based comparative analysis. Global Change Biology, 2020, 26, 944- 959.
doi: 10.1111/gcb.14875 |
|
|
Wang C, Wang S, Fu B J, et al. Precipitation gradient determines the tradeoff between soil moisture and soil organic carbon, total nitrogen, and species richness in the Loess Plateau, China. Science Total Environment, 2017, 575, 1538- 1545.
doi: 10.1016/j.scitotenv.2016.10.047 |
|
|
Wu B, Han H Y, He J, et al. Field-specific calibration and evaluation of ECH2O EC-5 sensor for sandy soils. Soil Science Society of America Journal, 2014, 78 (1): 70- 78.
doi: 10.2136/sssaj2013.05.0209 |
|
|
Wu G L, Jia C, Huang Z, et al. Plant litter crust appear as a promising measure to combat desertification in sandy land ecosystem. Catena, 2021, 206, 105573.
doi: 10.1016/j.catena.2021.105573 |
|
|
Yang Q C, Mu H K, Wang H, et al. Quantitative evaluation of groundwater recharge and evaporation intensity with stable oxygen and hydrogen isotopes in a semi-arid region, northwest China. Hydrological Processes, 2018, 32 (9): 1130- 1136.
doi: 10.1002/hyp.11474 |
|
|
Yu Z, Liu S R, Wang J X. et al. Natural forests exhibit higher carbon sequestration and lowerwater consumption than planted forests in China. Global Change Biology, 2019, 25, 68- 77.
doi: 10.1111/gcb.14484 |
|
|
Zhao H L, Zhou R L, Su Y Z, et al. Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecological Engineering, 2007, 31, 1- 8.
doi: 10.1016/j.ecoleng.2007.04.010 |
|
|
Zhao M, Wang W K, Ma Z T, et al. Soil water dynamics based on a contrastive experiment between vegetated and non-vegetated sites in a semiarid region in northwest China. Journal of Hydrology, 2021, 603, 126880.
doi: 10.1016/j.jhydrol.2021.126880 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||