Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (11): 70-79.doi: 10.11707/j.1001-7488.LYKX20240686
• Research papers • Previous Articles Next Articles
Liu Yang1,Feng Yan1,*(
),Yanjiao Wang2
Received:2024-11-14
Revised:2025-09-08
Online:2025-11-25
Published:2025-12-11
Contact:
Feng Yan
E-mail:fyan@caf.ac.cn
CLC Number:
Liu Yang,Feng Yan,Yanjiao Wang. Spatiotemporal Variations Characteristics and Driving Forces of Vegetation Coverage in the Horqin and Otindag Sandy Lands[J]. Scientia Silvae Sinicae, 2025, 61(11): 70-79.
Table 1
Criteria of determining interaction"
| 判断依据 Criterion | 交互作用 Interaction |
| q(x1∩x2)<Min[q(x1),q(x2)] | 非线性减弱 Non-linear reduction |
| q(x1∩x2)= q(x1)+ q(x2) | 独立Independent |
| Min[q(x1),q(x2)]<q(x1∩x2)<Max[q(x1),q(x2)] | 单因子非线性减弱Single factor non-linear reduction |
| q(x1∩x2)>q(x1)+ q(x2) | 非线性增强Non-linear enhancement |
| q(x1∩x2)>Max(q(x1),q(x2)) | 双因子增强Bi-factor enhancement |
Table 3
Area proportion of FVC with significant change in Horqin and Otindag sandy lands"
| 沙地Sandy land | 面积占比Area proportion (%) | ||||||
| 极显著增加 Very significantly increased | 显著增加 Significantly increased | 不显著增加 No significantly increased | 无变化 Unchange | 不显著减少 No significantly reduced | 显著减少 Significantly reduced | 极显著减少 Very significantly reduced | |
| 科尔沁沙地 Horqin sandy land | 54.56 | 13.54 | 24.39 | 0.63 | 5.89 | 0.51 | 0.48 |
| 浑善达克沙地 Otindag sandy land | 11.89 | 8.43 | 50.38 | 10.77 | 17.37 | 0.71 | 0.44 |
Fig.4
Interaction detection results of driving factors in Horqin sandy land (a)and Otindag sandy land (b) X1: Land use type;X2: Population density;X3: Precipitation;X4: Solar radiation;X5: Temperature;X6: Wind speed; X7: Soil type; X8: Farmland production potential; X9: Potential evapotranspiration;X10: Gross domestic product (GDP);X11: Total sowing area. * for P<0.01, and the red font and blue font indicate bi-factor enhancement and non-linear enhancement respectively, the purple font indicates single factor non-linear reduction,and the yellow font indicates independent function."
Table 4
Projected areal proportion of FVC change trends in Horqin and Otindag sandy lands"
| 沙地Sandy land | 面积占比Area proportion (%) | |||
| 持续改善 Continuous improvement | 由改善到退化 From improvement to degradation | 持续退化 Continuous degradation | 由退化到改善 From degradation to improvement | |
| 科尔沁沙地Horqin sandy land | 22.96 | 70.34 | 1.88 | 4.82 |
| 浑善达克沙地Otindag sandy land | 12.09 | 68.89 | 2.64 | 16.38 |
|
陈雪萍, 赵学勇, 张 晶, 等. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素. 植物生态学报, 2023, 47 (8): 1082- 1093.
doi: 10.17521/cjpe.2022.0020 |
|
|
Chen X P, Zhao X Y, Zhang J, et al. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin sandy land, China. Chinese Journal of Plant Ecology, 2023, 47 (8): 1082- 1093.
doi: 10.17521/cjpe.2022.0020 |
|
|
何晨阳, 闫 峰, 卢 琦, 等. 2001—2020年埃及植被生长状况时空变化特征. 林业科学, 2023, 59 (3): 65- 72.
doi: 10.11707/j.1001-7488.LYKX20210566 |
|
|
He C Y, Yan F, Lu Q, et al. Characterization of spatiotemporal variations in vegetation growth in Egypt in 2001—2020. Scientia Silvae Sinicae, 2023, 59 (3): 65- 72.
doi: 10.11707/j.1001-7488.LYKX20210566 |
|
| 韩 磊, 曹鑫鑫, 朱会利, 等. 基于特征分区的陕北黄土高原植被覆盖变化及其驱动因素. 生态学报, 2023, 43 (20): 8564- 8577. | |
| Han L, Cao X X, Zhu H L, et al. Change of vegetation coverage and driving factor in the north Shanxi Loess Plateau based on characteristic zoning. Acta Ecologica Sinica, 2023, 43 (20): 8564- 8577. | |
| 郝家田, 胡云云, 杜一尘, 等. 基于NDVI的2009—2018年黄河流域林草植被覆盖变化. 林业科学, 2022, 58 (3): 10- 19. | |
| Hao J T, Hu Y Y, Du Y C, et al. NDVI-based coverage changes of forest and grass vegetation in Yellow River Basin during 2009 to 2018. Scientia Silvae Sinicae, 2022, 58 (3): 10- 19. | |
| 雷 茜, 胡忠文, 王敬哲, 等. 1985—2015年中国不同生态系统NDVI时空变化及其对气候因子的响应. 生态学报, 2023, 43 (15): 6378- 6391. | |
| Lei Q, Hu Z W, Wang J Z, et al. Spatiotemporal dynamics of NDVI in China from 1985 to 2015: ecosystem variation, regional differences, and response to climatic factors. Acta Ecologica Sinica, 2023, 43 (15): 6378- 6391. | |
| 刘慧丽, 陈 浩, 董廷旭, 等. 川渝地区NDVI动态特征及其对气候变化的响应. 生态学报, 2023, 43 (16): 6743- 6757. | |
| Liu H L, Chen H, Dong T X, et al. Variation characteristic of NDVI and its response to climate change in the Sichuan-Chongqing region. Acta Ecologica Sinica, 2023, 43 (16): 6743- 6757. | |
| 谭炳香, 沈明潭, 郄光发, 等. 冬奥会崇礼生态核心区植被覆盖时空变化遥感监测. 林业科学, 2022, 58 (4): 141- 151. | |
| Tan B X, Shen M T, Qie G F, et al. Temporal and spatial changes monitoring of vegetation coverage for the ecological core area of Chongli Winter Olympic Games. Scientia Silvae Sinicae, 2022, 58 (4): 141- 151. | |
| 马永桃, 任孝宗, 胡慧芳, 等. 基于地理探测器的浑善达克沙地植被变化定量归因. 中国沙漠, 2021, 41 (4): 195- 204. | |
| Ma Y T, Ren X Z, Hu H F, et al. Vegetation dynamics and its driving force in Otindag sandy land based on geodetector. Journal of Desert Research, 2021, 41 (4): 195- 204. | |
| 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72 (1): 116- 134. | |
| Wang J F, Xu C D. Geodetector: principle and prospective. Acta Geographica Sinica, 2017, 72 (1): 116- 134. | |
| 王瑞杰, 闫 峰. 2000—2018年西北砒砂岩区植被覆盖度与地形效应. 应用生态学报, 2020, 31 (4): 1194- 1202. | |
| Wang R J, Yan F. Fractional vegetation cover and topographic effects in pisha sandstone area of northwest China in 2000—2018. Chinese Journal of Applied Ecology, 2020, 31 (4): 1194- 1202. | |
| 王 超, 侯 鹏, 刘晓曼, 等. 中国重要生态系统保护和修复工程区域植被覆盖时空变化研究. 生态学报, 2023, 43 (21): 8903- 8916. | |
| Wang C, Hou P, Liu X M, et al. Spatiotemporal changes in vegetation cover of the national key ecosystem protection and restoration project areas, China. Acta Ecologica Sinica, 2023, 43 (21): 8903- 8916. | |
| 闫 峰, 吴 波, 王艳姣. 2000—2011年毛乌素沙地植被生长状况时空变化特征. 地理科学, 2013, 33 (5): 602- 608. | |
| Yan F, Wu B, Wang Y J. Spatial and temporal variations of vegetation growth status in Mu Us sandy land in 2000—2011. Scientia Geographica Sinica, 2013, 33 (5): 602- 608. | |
| 闫 峰, 王艳姣, 武建军, 等. 2009. 基于 Ts-EVI 时间序列谱的冬小麦面积提取. 农业工程学报, 25(4): 135−140. | |
| Yan F, Wang Y J, Wu J J, et al. 2009. Extracting winter wheat area using temporal sequence of Ts-EVI. Transactions of the Chinese Society of Agricultural Engineering, 25(4): 135−140. [in Chinese] | |
| 赵媛媛, 武海岩, 丁国栋, 等. 浑善达克沙地土地沙漠化研究进展. 中国沙漠, 2020, 40 (5): 101- 111. | |
| Zhao Y Y, Wu H Y, Ding G D, et al. A review on the aeolian desertification in the Otindag sandy land. Journal of Desert Research, 2020, 40 (5): 101- 111. | |
| 张思源, 聂 莹, 张海燕, 等. 基于地理探测器的内蒙古植被NDVI时空变化与驱动力分析. 草地学报, 2020, 28 (5): 1460- 1472. | |
| Zhang S Y, Nie Y, Zhang H Y, et al. Spatiotemporal variation of vegetation NDVI and its driving forces in Inner Mongolia based on geodetector. Acta Agrestia Sinica, 2020, 28 (5): 1460- 1472. | |
| 张 钤, 张方敏, 卢 琦, 等. 生态工程对科尔沁沙地主要生态服务功能的影响. 水土保持通报, 2021, 41 (5): 154- 159, 165, 373. | |
| Zhang Q, Zhang F M, Lu Q, et al. Effects of ecological construction projects on primary ecosystem services in Horqin sandy land. Bulletin of Soil and Water Conservation, 2021, 41 (5): 154- 159, 165, 373. | |
|
Ali R, Kuriqi A, Abubaker S, et al. Long-term trends and seasonality detection of the observed flow in Yangtze River using mann-kendall and sen’s innovative trend method. Water, 2019, 11 (9): 1855.
doi: 10.3390/w11091855 |
|
|
Du H. Spatiotemporal evolution of fractional vegetation cover and its response to climate change based on MODIS data in the subtropical region of China. Remote Sensing, 2021, 13 (5): 913.
doi: 10.3390/rs13050913 |
|
|
Feng X, Tian J, Wang Y, et al. Spatio-temporal variation and climatic driving factors of vegetation coverage in the Yellow River Basin from 2001 to 2020 Based on Kndvi. Forests, 2023, 14 (3): 620.
doi: 10.3390/f14030620 |
|
|
Han Z, Song W. Interannual trends of vegetation and responses to climate change and human activities in the Great Mekong Subregion. Global Ecology and Conservation, 2022, 38, e02215.
doi: 10.1016/j.gecco.2022.e02215 |
|
|
He C Y, Yan F, Wang Y J, et al. Spatiotemporal variation in vegetation growth status and its response to climate in the Three-River headwaters region, China. Remote Sensing, 2022, 14 (19): 5041.
doi: 10.3390/rs14195041 |
|
|
Liu L, Xu X L, Chen X. Assessing the impact of urban expansion on potential crop yield in China during 1990–2010. Food Security, 2015, 7 (1): 33- 43.
doi: 10.1007/s12571-014-0411-z |
|
|
Mo K, Chen Q, Chen C, et al. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. Journal of Hydrology, 2019, 574, 138- 147.
doi: 10.1016/j.jhydrol.2019.04.044 |
|
|
Peng S Z, Ding Y X, Wen Z M, et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011—2100. Agricultural and Forest Meteorology, 2017, 233, 183- 194.
doi: 10.1016/j.agrformet.2016.11.129 |
|
|
Peng L, Wang J, Liu M M, et al. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. CATENA, 2021, 203, 105331.
doi: 10.1016/j.catena.2021.105331 |
|
|
Wang H, Yao F, Zhu H, et al. Spatiotemporal variation of vegetation coverage and its response to climate factors and human activities in arid and semi-arid areas: case study of the Otindag sandy land in China. Sustainability, 2020, 12 (12): 5214.
doi: 10.3390/su12125214 |
|
|
Wang X, Song J L, Xiao Z Q, et al. Desertification in the Mu Us sandy land in China: response to climate change and human activity from 2000 to 2020. Geography and Sustainability, 2022, 3 (2): 177- 189.
doi: 10.1016/j.geosus.2022.06.001 |
|
|
Zhang X C, Jin X M. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River headwaters region, China. Ecological Indicators, 2021, 131, 108223.
doi: 10.1016/j.ecolind.2021.108223 |
|
|
Zhang Q, Gu L, Liu Y, et al. Spatio-temporal dynamics of normalized difference vegetation index and its response to climate change in Xinjiang, 2000–2022. Forests, 2024, 15 (2): 370.
doi: 10.3390/f15020370 |
|
|
Zhong X Z, Li J, Wang J L, et al. Linear and nonlinear characteristics of long-term NDVI using trend analysis: a case study of Lancang-Mekong River Basin. Remote Sense, 2022, 14, 6271.
doi: 10.3390/rs14246271 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||