Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (8): 231-240.doi: 10.11707/j.1001-7488.LYKX20240514
• Scientific notes • Previous Articles
Jiangfei Wang,Hui Li,Chenglei Zhu,Xiaolin Di,Ying Li,Qingnan Wang,Huiru Wan,Huayu Sun,Zhimin Gao*()
Received:
2024-09-03
Online:
2025-08-25
Published:
2025-09-02
Contact:
Zhimin Gao
E-mail:gaozhimin@icbr.ac.cn
CLC Number:
Jiangfei Wang,Hui Li,Chenglei Zhu,Xiaolin Di,Ying Li,Qingnan Wang,Huiru Wan,Huayu Sun,Zhimin Gao. Functions of PeBAM3 of Moso Bamboo Involved in Leaf Starch Degradation[J]. Scientia Silvae Sinicae, 2025, 61(8): 231-240.
Table 1
Primer sequences of PCR"
引物名称 Primer name | 正向序列 Forward sequence (5'–3') | 反向序列 Reverse sequence (5'–3') |
ORF-BAM3 | TCCGAGCACAGAGGAGAGC | AGACAACAGCGACCCTACAAT |
ORF-ERF1 | ATGGGGGATGATATTATGTGCG | CTACCAGAGCCGTAGCTCCGT |
pPeBAM3 | GTCTCCTCTGGTGGCAACGA | CACGGCTGCTTATCACCGAC |
SK-ERF1 | accgcggtggcggccgctctagaATGGGGGATGATATTATGTGCG | attggtaccgggccccccctcgagCTACCAGAGCCGTAGCTCCGT |
LUC-pBAM3 | attgggtaccgggccccccctcgagGTCTCCTCTGGTGGCAACGA | ccccgggctgcaggaattcgatatcCACGGCTGCTTATCACCGAC |
Ubi-BAM3 | ggtgttacttctgcagggatccATGGCGCTCACGCTGCAGTC | ttgctcaccataggcctcacgtgCAATGCCGCGGCGGCGC |
qPCR_BAM3 | GAGCGCGTTCACGTACCT | TCGGACATCGCCTTCACG |
qPCR_ERF1 | GCAGCTCGCCAAGACCAA | TGGGCCCACTGAAGGACT |
Table 2
Cis-element analysis of PeBAM3 promoter"
作用元件 Cis-element | 序列 Sequence | 数量 Quantity | 功能 Function |
AE-box | AGAAACAA | 1 | 光响应模块Part of a module for light response |
G-box | TACGTG | 8 | 光响应顺式作用调控元件Cis-acting regulatory element involved in light responsiveness |
Box 4 | ATTAAT | 2 | 光响应的保守DNA模块Part of a conserved DNA module involved in light responsiveness |
chs-CMA2c | ATATACGTGAAGG | 1 | 光响应元件Part of a light responsive element |
Pc-CMA2c | GCCCACGCA | 1 | 光响应元件Part of a light responsive element |
TCCC-motif | TCTCCCT | 2 | 光响应元件Part of a light responsive element |
TCT-motif | TCTTAC | 1 | 光响应元件Part of a light responsive element |
CCAAT-box | CAACGG | 2 | MYBHv1 结合位点MYBHv1 binding site |
P-box | CCTTTTG | 1 | 赤霉素响应元件Gibberellin-responsive element |
TGA-element | AACGAC | 1 | 生长素响应元件Auxin-responsive element |
TATA-box | TATA | 8 | 转录起始位点上游-30附近核心启动子元件Core promoter element around -30 of transcription start |
CGTCA-motif | CGTCA | 3 | 茉莉酸甲酯响应顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
TGACG-motif | TGACG | 1 | 茉莉酸甲酯响应顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
GCN4_motif | TGAGTCA | 1 | 胚乳表达顺式调控元件Cis-regulatory element involved in endosperm expression |
CAAT-box | CCAAT | 21 | 启动子和增强子区域普通顺式作用元件Common cis-acting element in promoter and enhancer regions |
AuxRR-core | GGTCCAT | 1 | 生长素响应顺式作用调控元件Cis-acting regulatory element involved in auxin responsiveness |
A-box | CCGTCC | 1 | 顺式作用调控元件Cis-acting regulatory element |
ABRE | ACGTG | 5 | 脱落酸响应顺式作用调控元件Cis-acting element involved in the abscisic acid responsiveness |
ARE | AAACCA | 2 | 厌氧诱导顺式作用调控元件Cis-acting regulatory element essential for the anaerobic induction |
O2-site | GATGACATGG | 1 | 玉米醇溶蛋白代谢调控顺式作用调控元件Cis-acting regulatory element involved in zein metabolism regulation |
AT-rich sequence | TAAAATACT | 1 | 最大诱导子介导激活元件Element for maximal elicitor-mediated activation (2 copies) |
Table 3
Expression correlation of transcription factor genes with PeBAM3"
基因编码 Gene ID | 基因注释 Gene annotation | 启动子结合位点数 Number of promoter binding sites | 不同组织 Different tissues | 不同高度笋 Shoots at different heights | 一天内不同时间点的笋 Shoots at different times of day |
PH02Gene00372 | AP2 domain | 6 | 0.83 | 0.07 | ?0.35 |
PH02Gene12608 | Myb-like DNA-binding domain | 6 | ?0.06 | 0.46 | ?0.58 |
PH02Gene15456 | MYB-related protein | 6 | ?0.07 | ?0.36 | 0.24 |
PH02Gene34765 | No apical meristem (NAM) protein | 3 | 0.37 | ?0.19 | ?0.54 |
冯鹏飞, 李玉敏. 2021年中国竹资源报告. 世界竹藤通讯, 2023, 21 (2): 100- 103. | |
Feng P F, Li Y M. China's bamboo resources in 2021. World Bamboo and Rattan, 2023, 21 (2): 100- 103. | |
栗青丽, 王灵杰, 高培军, 等. 竹茎秆快速生长期淀粉分解相关酶基因表达的分析. 浙江农林大学学报, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661 |
|
Li Q L, Wang L J, Gao P J, et al. Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period. Journal of Zhejiang A& F University, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661 |
|
王宇迪, 赵东方, 李新国, 等. 2023. 香蕉β-淀粉酶基因MaBAM9b在水稻中的功能分析. 分子植物育种: 1–14. https://link.cnki.net/urlid/46.1068.S.20231120.0859.004. | |
Wang Y D, Zhao D F, Li X G, et al. 2023. Functional analysis of banana β-amylase gene MaBAM9b in rice. Molecular Plant Breeding: 1–14. [in Chinese]https://link.cnki.net/urlid/46.1068.S.20231120.0859.004 | |
David L C, Lee S K, Bruderer E, et al. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. Plant Physiology, 2022, 188 (1): 191- 207.
doi: 10.1093/plphys/kiab468 |
|
Fan C J, Ma J M, Guo Q R, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One, 2013, 8 (2): e56573.
doi: 10.1371/journal.pone.0056573 |
|
Fu J B, Zhao Y Y, Zhou Y, et al. 2024. MrERF039 transcription factor plays an active role in the cold response of Medicago ruthenica as a sugar molecular switch. Plant, Cell & Environment, 47(5): 1834–1851. | |
Fulton D C, Stettler M, Mettler T, et al. β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. The Plant Cell, 2008, 20 (4): 1040- 1058.
doi: 10.1105/tpc.107.056507 |
|
Gunaseelan K, McAtee P A, Nardozza S, et al. Copy number variants in kiwifruit ETHYLENE RESPONSE FACTOR/APETALA2 (ERF/AP2)-like genes show divergence in fruit ripening associated cold and ethylene responses in C-REPEAT/DRE BINDING FACTOR-like genes. PLoS One, 2019, 14 (5): e0216120.
doi: 10.1371/journal.pone.0216120 |
|
Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6 (2): 271- 282.
doi: 10.1046/j.1365-313X.1994.6020271.x |
|
Hirano T, Takahashi Y, Fukayama H, et al. Identification of two plastid-targeted β-amylases in rice. Plant Production Science, 2011, 14 (4): 318- 324.
doi: 10.1626/pps.14.318 |
|
Horrer D, Flütsch S, Pazmino D, et al. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Current Biology, 2016, 26 (3): 362- 370.
doi: 10.1016/j.cub.2015.12.036 |
|
Kaplan F, Guy C L. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. The Plant Journal, 2005, 44 (5): 730- 743.
doi: 10.1111/j.1365-313X.2005.02565.x |
|
Li C, Godwin I D, Gilbert R G. Diurnal changes in Sorghum leaf starch molecular structure. Plant Science, 2015, 239, 147- 154.
doi: 10.1016/j.plantsci.2015.07.026 |
|
Liu L B, Zhou J Y, Zhang J T, et al. MdBAM17, a novel member of the β-amylase gene family, positively regulates starch degradation in ALA-induced stomatal opening in apple (Malus × domestica). Horticultural Plant Journal, 2024, 11 (2): 504- 519. | |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262 |
|
Ma X L, Zhao H S, Xu W Y, et al. Co-expression gene network analysis and functional module identification in bamboo growth and development. Frontiers in Genetics, 2018, 9, 574.
doi: 10.3389/fgene.2018.00574 |
|
Ma X L, Zhao H S, Yan H Y, et al. Refinement of bamboo genome annotations through integrative analyses of transcriptomic and epigenomic data. Computational and Structural Biotechnology Journal, 2021, 19, 2708- 2718.
doi: 10.1016/j.csbj.2021.04.068 |
|
Maeo K, Nakaya Y, Mitsuda N, et al. ACRE, a class of AP2/ERF transcription factors, activates the expression of sweet potato ß-amylase and sporamin genes through the sugar-responsible element CMSRE-1. Plant Molecular Biology, 2024, 114 (3): 54.
doi: 10.1007/s11103-024-01450-z |
|
Monroe J D. Involvement of five catalytically active Arabidopsis β-amylases in leaf starch metabolism and plant growth. Plant Direct, 2020, 4 (2): e00199.
doi: 10.1002/pld3.199 |
|
Reinhold H, Soyk S, Šimková K, et al. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23 (4): 1391- 1403.
doi: 10.1105/tpc.110.081950 |
|
Scheidig A, Fröhlich A, Schulze S, et al. Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. The Plant Journal, 2002, 30 (5): 581- 591.
doi: 10.1046/j.1365-313X.2002.01317.x |
|
Seung D, Thalmann M, Sparla F, et al. Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase. Journal of Biological Chemistry, 2013, 288 (47): 33620- 33633.
doi: 10.1074/jbc.M113.514794 |
|
Smith A M, Zeeman S C, Smith S M. Starch degradation. Annual Review of Plant Biology, 2005, 56 (1): 73- 98.
doi: 10.1146/annurev.arplant.56.032604.144257 |
|
Smith S M, Fulton D C, Chia T, et al. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology, 2004, 136 (1): 2687- 2699.
doi: 10.1104/pp.104.044347 |
|
Sugimura Y, Fukayama H, Michiyama H, et al. 2023. The relationship between β-amylase and the degradation of starch temporarily stored in rice leaf blades. Bioscience, Biotechnology, and Biochemistry, 87(7): 736–741. | |
Yang Y M, Zhang Y F, Zhang L Y, et al. Isolation of Bacillus siamensis B-612, a strain that is resistant to rice blast disease and an investigation of the mechanisms responsible for suppressing rice blast fungus. International Journal of Molecular Sciences, 2023, 24 (10): 8513.
doi: 10.3390/ijms24108513 |
|
Zhao H S, Gao Z M, Wang L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience, 2018, 7 (10): 115.
doi: 10.1093/gigascience/giy115 |
|
Zhu C L, Lin Z M, Yang K B, et al. A bamboo ‘PeSAPK4-PeMYB99-PeTIP4-3’ regulatory model involved in water transport. New Phytologist, 2024, 243 (1): 195- 212.
doi: 10.1111/nph.19787 |
[1] | Xiaoling Yan,Qin Hao,Zi Shen,Yujia Zhang,Xiaoqin Guo. Expression, Protein Interaction and Biological Function Analysis of PheFT1 Gene in Moso Bamboo [J]. Scientia Silvae Sinicae, 2025, 61(4): 140-152. |
[2] | Xinxin Ma,You Wang,Jiajun Wang,Long Feng,Jianfeng Ma. Changes in Ash Composition of Bamboo during Pyrolysis and the Distribution Pattern of Silicon Transformation [J]. Scientia Silvae Sinicae, 2025, 61(2): 172-179. |
[3] | Ao Zhang,Wenting Li,Tianxiang Wang,Yaoxing Wu,Gang Lei,Lianghua Qi. Regional Differentiation and It’s Influencing Factors of Soil Easily-oxidized Organic Carbon in Subtropical Phyllostachys edulis Forests [J]. Scientia Silvae Sinicae, 2024, 60(6): 1-12. |
[4] | Yi Wang,Junwei Luan,Chen Chen,Shirong Liu. Asymmetric Response of Soil Respiration and Its Components to Nitrogen and Phosphorus Addition in Phyllostachys edulis Forest [J]. Scientia Silvae Sinicae, 2023, 59(7): 54-64. |
[5] | Jinling Yuan,Jinjun Yue,Jingxia Ma,Lei Yu,Lei Liu. Culm Form Characteristics of Phyllostachys edulis ‘Yuanbao’ [J]. Scientia Silvae Sinicae, 2023, 59(5): 71-80. |
[6] | Wei Zhang,Yuyou He,Ziwu Guo,Sheping Wang,Shuanglin Chen. Characteristics of Arbor Species Community Structure and Diversity in the Succession of Out-of-Management Phyllostachys edulis Forest [J]. Scientia Silvae Sinicae, 2022, 58(12): 12-20. |
[7] | Jiamin Xie,Mingbing Zhou. Identification and Bioinformatics Analysis of Mariner-Like Element Autonomous Transposons in Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2022, 58(1): 175-184. |
[8] | Wenjie Hu,Hongdong Pang,Xingyi Hu,Faxin Huang,Jiawei Yang,Lijun Xu,Miao Gong. Effects of Bamboo Forest Density and Fertilizer Types on the Yield and Quality of Phyllostachys edulis Bamboo Shoots and Soil Physicochemical Properties in Mufu Mountain Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 32-42. |
[9] | Chenglei Zhu,Kebin Yang,Xiurong Xu,Shuang Ma,Xiaopei Li,Zhimin Gao. Molecular Characteristics of NIP Genes in Phyllostachys edulis and Their Expression Patterns in Response to Stresses [J]. Scientia Silvae Sinicae, 2021, 57(1): 64-76. |
[10] | Linxin Fang,Shouke Zhang,Kefeng Jia,Bihuan Ye,Wei Zhang,Jinping Shu,Haojie Wang,Tiansen Xu. Oviposition Preference of Eutomostethus deqingensis (Hymenoptera: Tenthredinidae) on Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2021, 57(1): 131-139. |
[11] | Chenglei Zhu,Caili Li,Xiaopei Li,Jingjing Shi,Zhimin Gao. Molecular Characteristics of Tubulins and Preliminary Function Analysis of PeTUA3 in Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2020, 56(7): 44-54. |
[12] | Qianyong Shen,Mengping Tang. Stem Volume Models of Phyllostachys edulis in Zhejiang Province [J]. Scientia Silvae Sinicae, 2020, 56(5): 89-96. |
[13] | Tao Chenyue, Shao Shanlu, Shi Wenhui, Lin Lin, Tang Yilei, Ying Yeqing. Effects of Nitrogen Deposition on Biomass and Protective Enzyme Activities of Phyllostachys edulis Seedlings under Drought Stress [J]. Scientia Silvae Sinicae, 2019, 55(9): 31-40. |
[14] | Ali Chen,Wanqi Zhao,Yuqing Ruan,Chunce Guo,Wengen Zhang,Jianmin Shi,Guangyao Yang,Fen Yu. Pattern of Emergence and Degradation of Phyllostachys edulis' Pachyloen' Shoot and the Changes of Nutrient Composition during Degradation [J]. Scientia Silvae Sinicae, 2019, 55(12): 32-40. |
[15] | Yaqian Yang,Ying Fu,Mingbing Zhou. Identification of Cytokinin Related Genes and Characterization of Their Expression in Phyllostachys edulis Shoots [J]. Scientia Silvae Sinicae, 2019, 55(12): 61-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||