Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (11): 150-159.doi: 10.11707/j.1001-7488.LYKX20250012
• Research papers • Previous Articles
Min Ji1,Rui Gao2,Xiaohuan Wang1,*(
),Xingliang Diao1,Jiakai Han1,Yang Zhao1,Guofu Wang1,Wei Zhang1,*(
)
Received:2025-01-07
Revised:2025-08-13
Online:2025-11-25
Published:2025-12-11
Contact:
Xiaohuan Wang,Wei Zhang
E-mail:wangxiaohuan@caf.ac.cn;wzhang@caf.ac.cn
CLC Number:
Min Ji,Rui Gao,Xiaohuan Wang,Xingliang Diao,Jiakai Han,Yang Zhao,Guofu Wang,Wei Zhang. Online Detecting Method of Structural Lumber Knot Based on Deep Learning[J]. Scientia Silvae Sinicae, 2025, 61(11): 150-159.
Table 1
Analysis of detection accuracy based on comparison between deep learning algorithm detection results and manual visual statistical results"
| 样品分组 Sample grouping | 2个宽面 Two wide face | 实际节子数量 The actual number of knots / piece | 检出节子数量 Number of detected knots / piece | 漏检率 Missed detection rate(%) | 非节子但被识别 为节子数量 Misjudged as a knot/ piece | 检测精度 Detection precision(%) |
| A | A | 12 | 11 | 8.33 | 1 | 91.67 |
| B | 14 | 14 | 0.00 | 0 | 100.00 | |
| B | A | 5 | 4 | 20.00 | 0 | 80.00 |
| B | 4 | 4 | 0.00 | 0 | 100.00 | |
| C | A | 15 | 13 | 13.33 | 0 | 86.67 |
| B | 16 | 13 | 18.75 | 1 | 81.25 | |
| D | A | 8 | 7 | 12.50 | 1 | 87.50 |
| B | 7 | 6 | 14.29 | 0 | 85.71 | |
| E | A | 13 | 12 | 7.69 | 2 | 92.31 |
| B | 14 | 12 | 14.29 | 1 | 85.71 | |
| F | A | 5 | 5 | 0.00 | 0 | 100.00 |
| B | 7 | 6 | 14.29 | 1 | 85.71 | |
| G | A | 10 | 10 | 0.00 | 0 | 100.00 |
| B | 13 | 11 | 15.38 | 0 | 84.62 | |
| H | A | 4 | 4 | 0.00 | 0 | 100.00 |
| B | 6 | 6 | 0.00 | 0 | 100.00 | |
| I | A | 15 | 13 | 13.33 | 1 | 86.67 |
| B | 12 | 11 | 8.33 | 1 | 91.67 | |
| J | A | 5 | 4 | 20.00 | 0 | 80.00 |
| B | 4 | 4 | 0.00 | 1 | 100.00 |
Table 2
Performance indicators of structural sawn lumber detection based based on the deep learning algorithm"
| 检测指标 Detection metrics | 精度Precision(%) |
| 识别与检测精度 Detection accuracy | 90.97 |
| 漏检率 Missed detection rate | 9.03 |
| 模型均值平均精度 Model mAP | 91.50 |
| 节子缺陷位置(X,Y)平均检测精度 Average detection accuracy of defect location (X, Y) | 86.29 |
| 节子缺陷尺寸(L,W)平均检测精度 Average detection accuracy of defect size (L, W) | 85.95 |
|
陈龙现, 刘传泽, 杜光月, 等. 人造板在线同步图像采集系统设计与实现. 制造业自动化, 2019, 41 (1): 68- 71.
doi: 10.3969/j.issn.1009-0134.2019.01.016 |
|
|
Chen L X, Liu C Z, Du G Y, et al. Design and implementation of synchronous image acquisition system of wood-based panels. Manufacturing Automation, 2019, 41 (1): 68- 71.
doi: 10.3969/j.issn.1009-0134.2019.01.016 |
|
|
邓斌攸,池志强,潘云峰,等. 家具板件圆形孔位的机器视觉在线检测算法. 木材科学与技术, 2022, 36 (2): 60- 64.
doi: 10.12326/j.2096-9694.2021099 |
|
|
Deng B Y, Chi Z Q, Pan Y F, et al. Algorithm of machine vision system for detecting holes in furniture panel. Chinese Journal of Wood Science and Technolog, 2022, 36 (2): 60- 64.
doi: 10.12326/j.2096-9694.2021099 |
|
|
侯晓鹏, 吴智慧, 刘海波, 等. 基于OPC统一架构的木制品加工设备信息互联互通方法. 木材科学与技术, 2022, 36 (6): 95- 102.
doi: 10.12326/j.2096-9694.2022098 |
|
|
Hou X P, Wu Z H, Liu H B, et al. Information interconnection and intercommunication method for woodworking equipment based on open platform communications unified architecture(OPC UA). Chinese Journal of Wood Science and Technology, 2022, 36 (6): 95- 102.
doi: 10.12326/j.2096-9694.2022098 |
|
|
贾浩男, 徐华东, 王立海, 等. 基于改进YOLOv5木板材表面缺陷的定量识别. 北京林业大学学报, 2023, 45 (4): 147- 155.
doi: 10.12171/j.1000-1522.20220419 |
|
|
Jia H N, Xu H D, Wang L H, et al. Quantitative identification of surface defects in wood paneling based on improved YOLOv5. Journal of Beijing Forestry University, 2023, 45 (4): 147- 155.
doi: 10.12171/j.1000-1522.20220419 |
|
|
彭晓瑞, 吕 斌, 李伟光, 等. 我国板式家具先进制造技术研发与应用进展. 木材科学与技术, 2023, 37 (2): 1- 7, 15.
doi: 10.12326/j.2096-9694.2022085 |
|
|
Peng X R, Lyu B, Li W G, et al. Development and application progress of advanced manufacturing technology for China’s panel furniture. Chinese Journal of Wood Science and Technology, 2023, 37 (2): 1- 7, 15.
doi: 10.12326/j.2096-9694.2022085 |
|
| 田智康, 葛浙东, 郑焕祺, 等. 2024. 基于深度学习的75种阔叶材微观辨识方法. 林业科学, 60(10): 94−103. | |
| Tian Z K, Ge Z D, Zheng H Q, et al. 2024. Microscopic identification methods for 75 types of hardwood based on deep neural network. Scientia Silvae Sinicae, 60(10): 94−103. [in Chinese] | |
| 王 勇, 张 伟. 锯材表面缺陷识别方法对比分析研究. 世界林业研究, 2022, 35 (4): 47- 52. | |
| Wang Y, Zhang W. Comparative analysis of surface defect recognition methods for sawntimber. World Forestry Research, 2022, 35 (4): 47- 52. | |
|
王 晰, 简振雄, 任明俊. 基于深度学习的逆向反射模型. 光学学报, 2023, 43 (21)
doi: 10.3788/AOS230615 |
|
|
Wang X, Jian Z X, Ren M J. Inverse reflectance model based on deep learning. Acta Optica Sinica, 2023, 43 (21)
doi: 10.3788/AOS230615 |
|
| 王晓明, 邓 璐, 史一哲, 等. 基于Harris特征与NDT-ICP算法的钢箱拱预制件尺寸智检方法. 交通运输工程学报, 2024, 24 (1): 158- 170. | |
| Wang X M, Deng L, Shi Y Z, et al. Intelligent dimensional inspection method for steel box arch prefabricated components based on Harris features and NDT-ICP algorithm. Journal of Traffic and Transportation Engineering, 2024, 24 (1): 158- 170. | |
| 吴雨生, 张 伟, 候晓鹏, 等. 基于机器视觉的杉木规格材节子检测与分等. 林业和草原机械, 2020, 1 (2): 13- 16. | |
| Wu Y S, Zhang W, Hou X P, et al. Fir structural timber detecting and grading based on machine vision technology. Forestry and Grassland Machinery, 2020, 1 (2): 13- 16. | |
| 杨 凡, 杨博凯, 李荣荣. 基于图像分割和深度学习的人造板表面缺陷检测. 浙江农林大学学报, 2024, 41 (1): 176- 182. | |
| Yang F, Yang B K, Li R R. Surface defect detection technology of wood-based panel based on image segmentation and deep learning. Journal of Zhejiang A & F University, 2024, 41 (1): 176- 182. | |
| 喻 炜, 周海燕, 刘 英, 等. 人造板无损检测技术研究进展. 世界林业研究, 2023, 36 (3): 58- 62. | |
| Yu W, Zhou H Y, Liu Y, et al. Research progress in nondestructive testing technology for wood-based panels. World Forestry Research, 2023, 36 (3): 58- 62. | |
| 朱剑刚, 王 旭. 木质家具智能制造赋能技术及发展路径分析. 林业工程学报, 2021, 6 (6): 177- 183. | |
| Zhu J G, Wang X. Research on enabling technologies and development path of intelligent manufacturing of wooden furniture. Journal of Forestry Engineering, 2021, 6 (6): 177- 183. | |
|
张 赛, 王应彪, 杨 谭, 等. 基于改进LeNet-5模型的木材表面典型缺陷识别方法研究. 木材科学与技术, 2021, 35 (6): 31- 37.
doi: 10.12326/j.2096-9694.2021024 |
|
|
Zhang S, Wang Y B, Yang T, et al. Detecting method of the wood surface defects based on modified LeNet-5 model. Chinese Journal of Wood Science and Technology, 2021, 35 (6): 31- 37.
doi: 10.12326/j.2096-9694.2021024 |
|
|
Barmpoutis P, Dimitropoulos K, Barboutis I, et al. Wood species recognition through multidimensional texture analysis. Computers and Electronics in Agriculture, 2018, 144, 241- 248.
doi: 10.1016/j.compag.2017.12.011 |
|
|
Bengio Y, LeCun Y, Hinton G. Deep learning for AI. Communications of the ACM, 2021, 64 (7): 58- 65.
doi: 10.1145/3448250 |
|
|
Brunetti M, Burato P, Cremonini C, et al. Visual and machine grading of larch (Larix decidua Mill. ) structural timber from the Italian Alps. Materials and Structures, 2016, 49 (7): 2681- 2688.
doi: 10.1617/s11527-015-0676-5 |
|
|
Chung S, Abbott L F. Neural population geometry: an approach for understanding biological and artificial neural networks. Current Opinion in Neurobiology, 2021, 70, 137- 144.
doi: 10.1016/j.conb.2021.10.010 |
|
|
Gazo R, Wells L, Krs V, et al. Validation of automated hardwood lumber grading system. Computers and Electronics in Agriculture, 2018, 155, 496- 500.
doi: 10.1016/j.compag.2018.06.041 |
|
| Ishida T, Yamane I, Sakai T, et al. 2020. Do we need zero training loss after achieving zero training error? arXiv preprint arXiv: 2002.08709. | |
|
Ji M, Zhang W, Wang G F, et al. Machine vision for knot detection and location in Chinese fir lumber. Forest Products Journal, 2024, 74 (2): 185- 202.
doi: 10.13073/FPJ-D-23-00050 |
|
|
Ji M, Zhang W, Han J K, et al. A deep learning-based algorithm for online detection of small target defects in large-size sawn timber. Industrial Crops and Products, 2024, 222, 119671.
doi: 10.1016/j.indcrop.2024.119671 |
|
|
Kamal K, Qayyum R, Mathavan S, et al. Wood defects classification using laws texture energy measures and supervised learning approach. Advanced Engineering Informatics, 2017, 34, 125- 135.
doi: 10.1016/j.aei.2017.09.007 |
|
|
Li X Y, Chiong R, Hu Z Y, et al. A graph neural network model with local environment pooling for predicting adsorption energies. Computational and Theoretical Chemistry, 2023, 1226, 114161.
doi: 10.1016/j.comptc.2023.114161 |
|
| Lukacevic M, Kandler G, Hu M, et al. A 3D model for knots and related fiber deviations in sawn timber for prediction of mechanical properties of boards. Materials & Design, 2019, 166, 107617. | |
|
Pahlberg T, Hagman O, Thurley M. Recognition of boards using wood fingerprints based on a fusion of feature detection methods. Computers and Electronics in Agriculture, 2015, 111, 164- 173.
doi: 10.1016/j.compag.2014.12.014 |
|
| Pang G S, Shen C H, Cao L B, et al. Deep learning for anomaly detection. ACM Computing Surveys, 2022, 54 (2): 1- 38. | |
|
Ramos L T, Casas E, Romero C, et al. A study of YOLO architectures for wildfire and smoke detection in ground and aerial imagery. Results in Engineering, 2025, 26, 104869.
doi: 10.1016/j.rineng.2025.104869 |
|
| Tu Y X, Ling Z G, Guo S Y, et al. An accurate and real-time surface defects detection method for sawn lumber. IEEE Transactions on Instrumentation and Measurement, 2020, 70, 2501911. | |
| Wang B. 2022. A parallel implementation of computing mean average precision. arXiv preprint arXiv, 2206.09504. | |
|
Wang Y, Zhang W, Gao R, et al. Recent advances in the application of deep learning methods to forestry. Wood Science and Technology, 2021, 55 (5): 1171- 1202.
doi: 10.1007/s00226-021-01309-2 |
|
|
Wright L G, Onodera T, Stein M M, et al. Deep physical neural networks trained with backpropagation. Nature, 2022, 601, 549- 555.
doi: 10.1038/s41586-021-04223-6 |
|
|
Zhao J B, Meng Z X, Jin Z, et al. Bending properties of bamboo scrimber with holes in different sizes and positions. Construction and Building Materials, 2019, 200, 209- 217.
doi: 10.1016/j.conbuildmat.2018.12.076 |
| [1] | Xiaoning Ge,Xinqiao Xu,Huaiqing Zhang,Jing Zhang,Jie Yang,Zeyu Cui,Rurao Fu,Jinjie Liang,Tianhua Zou,Linlong Wang,Yang Liu. Progress and Reflection on Genotype-Environment Interaction Algorithms in Forest Tree Breeding [J]. Scientia Silvae Sinicae, 2025, 61(3): 1-15. |
| [2] | Wanying Xie,Wenping Liu,Han Wang. UAV Images of Pine Forests for Early Detection of Pine Wood Nematode Infestation [J]. Scientia Silvae Sinicae, 2024, 60(9): 124-133. |
| [3] | Jiandong Qi,Shangzi Zheng,Ziyi Chen,Zhongtian Ma. Wildlife Image Recognition of Infrared Cameras in Beijing Area Based on an Improvement ConvNeXt Model [J]. Scientia Silvae Sinicae, 2024, 60(8): 33-45. |
| [4] | Zhikang Tian,Zhedong Ge,Huanqi Zheng,Zhishuai Zheng,Yucheng Zhou. Microscopic Identification Methods for 75 Types of Hardwood Based on Deep Neural Network [J]. Scientia Silvae Sinicae, 2024, 60(10): 94-103. |
| [5] | Jiandong Qi,Zhongtian Ma,Dehuai Zhang,Yun Tian. Wildlife Image Recognition in Miyun District Based on BS-ResNeXt-50 [J]. Scientia Silvae Sinicae, 2023, 59(8): 112-122. |
| [6] | Jia Li,Lan Lan,Zuozhong Zhang,Wentao Yuan,Demin Gao,Shuqin Zong,Qiaolin Ye. Inversion Technology of Forest Fuel Moisture Content Based on Deep Learning [J]. Scientia Silvae Sinicae, 2022, 58(10): 47-58. |
| [7] | Yan Zhou,Wenping Liu,Youqing Luo,Shixiang Zong. Small Object Detection for Infected Trees Based on the Deep Learning Method [J]. Scientia Silvae Sinicae, 2021, 57(3): 98-107. |
| [8] | Ying Guo,Zengyuan Li,Erxue Chen,Xu Zhang,Lei Zhao,Yan Chen,Yahui Wang. A Deep Learning Method for Forest Fine Classification Based on High Resolution Remote Sensing Images: Two-Branch FCN-8s [J]. Scientia Silvae Sinicae, 2020, 56(3): 48-60. |
| [9] | Mingwei Shao,Junyu Dong. A New Algorithm for Automatic Optimizing Cross-Cut Saw Based on Deep Learning Algorithm [J]. Scientia Silvae Sinicae, 2020, 56(12): 123-129. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||