Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 124-133.doi: 10.11707/j.1001-7488.LYKX20220898
Previous Articles Next Articles
Wanying Xie,Wenping Liu*,Han Wang
Received:
2022-12-20
Online:
2024-09-25
Published:
2024-10-08
Contact:
Wenping Liu
CLC Number:
Wanying Xie,Wenping Liu,Han Wang. UAV Images of Pine Forests for Early Detection of Pine Wood Nematode Infestation[J]. Scientia Silvae Sinicae, 2024, 60(9): 124-133.
Fig.3
Framework of this paper DS_Focus and DS_C3 denote the depth separable modules applied to Focus and CSP, respectively;MFEB, MFEM3 denote the feature extraction modules proposed in this paper;SPPF is the fast spatial pooling pyramid;CA denotes the coordinated attention module;FAFM denotes the feature alignment fusion module proposed in this paper;CBM denotes the common convolutional, normalisation, and Mish activation."
Fig.8
Feature heat map extracted by ordinary convolutional block (first row), ACMix (second row), MFEB (third row) The red rectangular box in a represents the early-stage pine wilt disease. b, c, and d respectively represent the heatmaps of output features P3, P4, and P5 from three different methods. e, f, and g represent the process of marking the detected bounding boxes on the P3, P4, and P5 feature maps, then scaling the heatmap within each bounding box and removing the heatmap data outside the bounding boxes."
Table 3
Details of each module of the backbone network"
层 Layer | 输入图像尺寸 Input image size/pixels | 模块 Module | n | s |
C1 | 800×800×3 | DS-Focus | — | 2 |
C2 | 400×400×32(80) | MFEB | — | 2 |
C2 | 200×200×64(160) | MFEM3 | 1 | 1 |
C3 | 200×200×64(160) | MFEB | — | 2 |
C3 | 100×100×128(320) | MFEM3 | 3 | 1 |
C4 | 100×100×128(320) | MFEB | — | 2 |
C4 | 50×50×256(640) | MFEM3 | 3 | 1 |
C5 | 50×50×256(640) | MFEB | — | 2 |
C5 | 25×25×512( | SPPF | — | 1 |
C5 | 25×25×512( | MFEM3 | 1 | 1 |
Table 4
Ablation results with YOLOV5s and YOLOV5m as baseline"
方法 Method | DS | MFEB | MFEM3 | FAFM+CA | PANet引入新特征 PANet introduces new features | F(%) | AP0.5(%) | AP0.5:0.95(%) | P/M | FLOPs/G |
YOLOv5s | 90.2 | 92.1 | 64.4 | 7.1 | 16.3 | |||||
策略1 Strategy 1 | √ | 88.6 | 93.2 | 61.2 | 5.2 | 10.8 | ||||
策略2 Strategy 2 | √ | √ | 91.0 | 94.1 | 67.8 | 4.6 | 13.4 | |||
策略3 Strategy 3 | √ | 91.7 | 94.2 | 66.4 | 9.8 | 19.1 | ||||
策略4 Strategy 4 | √ | 90.5 | 92.5 | 64.9 | 7.3 | 17.4 | ||||
策略5 Strategy5 | √ | √ | 91.3 | 94.5 | 66.9 | 5.5 | 15.3 | |||
策略6 Strategy 6 | √ | √ | √ | 92.1 | 94.7 | 66.8 | 4.8 | 11.1 | ||
策略7 Strategy7 | √ | √ | √ | √ | 91.4 | 94.6 | 68.7 | 6.5 | 13.7 | |
本研究方法-s Our method-s | √ | √ | √ | √ | √ | 93.1 | 95.2 | 68.8 | 6.57 | 13.9 |
YOLOv5m | 91.4 | 92.4 | 68.5 | 21.3 | 50.2 | |||||
策略8 Strategy 8 | √ | 88.6 | 93.5 | 63.7 | 12.8 | 26.9 | ||||
策略9 Strategy 9 | √ | √ | 91.8 | 94.7 | 70.2 | 13.6 | 36.8 | |||
策略10 Strategy10 | √ | 91.2 | 94.3 | 69.0 | 26.1 | 55.8 | ||||
策略11 Strategy11 | √ | 90.9 | 92.9 | 68.8 | 15.5 | 52.1 | ||||
策略12 Strategy12 | √ | √ | 91.6 | 94.4 | 68.1 | 13.5 | 40.2 | |||
策略13 Strategy13 | √ | √ | √ | 92.9 | 94.9 | 68.4 | 9.9 | 28.4 | ||
策略14 Strategy 14 | √ | √ | √ | √ | 92.6 | 95.6 | 68.7 | 15.7 | 33.5 | |
本研究方法-m Our method-m | √ | √ | √ | √ | √ | 93.4 | 96.2 | 69.5 | 15.8 | 33.9 |
Table 5
Performance comparison of different methods on EPI datasets"
方法 Method | 主干网络 Backbone network | 输入图像尺寸 Input image size/pixels | 内存占用量 Memory usage/M | 每秒处理图像的帧数 Frames per second (FPS) | AP0.5(%) |
Faster R-CNN | VGG16 | 800×800 | 982.6 | 4.8 | 86.7 |
Faster R-CNN | ResNet101 | 800×800 | 377.5 | 3.6 | 87.9 |
Fcos | ResNet101 | 800×800 | 409.7 | 7.5 | 89.9 |
RetinaNet | ResNet101 | 640×640 | 808.2 | 5.8 | 88.7 |
SSD | VGG16 | 640×640 | — | — | 88.5 |
YOLOv5s | ResNet50 | 800×800 | 242.0 | 64.1 | 93.2 |
YOLOv5s | CSPDarkNet53 | 800×800 | 54.3 | 109.0 | 92.1 |
YOLOv5m | CSPDarkNet53 | 800×800 | 161 | 70.0 | 92.4 |
YOLOX-s | CSPDarkNet53 | 640×640 | 72.1 | 67.1 | 91.2 |
YOLOv6s | EfficientRep | 800×800 | 144.0 | 85.5 | 94.3 |
本研究方法-s Our method-s | — | 800×800 | 12.8 | 55.3 | 95.2 |
本研究方法-m Our method-m | — | 800×800 | 30.6 | 38.0 | 96.2 |
理永霞, 王 璇, 刘振凯, 等. 松材线虫致病机理研究进展. 中国森林病虫, 2022, 41 (3): 11- 20. | |
Li Y X, Wang X, Liu Z K, et al. Research advance of pathogenic mechanism of pine wood nematode. Forest Pest and Disease, 2022, 41 (3): 11- 20. | |
骆有庆. 高度重视虫传危险性森林病害——松材线虫病. 昆虫知识, 2001, 38 (2): 150. | |
Luo Y Q. Insect mediated forest disease: Bursaphelenchus xylophilus. Chinese Bulletin of Entomology, 2001, 38 (2): 150. | |
孙 钰, 周 焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法. 农业工程学报, 2018, 34 (21): 74- 81.
doi: 10.11975/j.issn.1002-6819.2018.21.009 |
|
Sun Y, Zhou Y, Yuan M S, et al. UAV real-time monitoring for forest pest based on deep learning. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (21): 74- 81.
doi: 10.11975/j.issn.1002-6819.2018.21.009 |
|
陶 欢, 李存军, 谢春春, 等. 基于HSV阈值法的无人机影像变色松树识别. 南京林业大学学报(自然科学版), 2019, 43 (3): 99- 106. | |
Tao H, Li C J, Xie C C, et al. Recognition of red-attack pine trees from UAV imagery based on the HSV threshold method. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43 (3): 99- 106. | |
Bochkovskiy A, Wang C Y, Liao H Y M. 2020. YOLOv4: optimal speed and accuracy of object detection. arXiv: 2004.10934. | |
Dai J F, Qi H Z, Xiong Y W, et al. 2017. Deformable convolutional networks. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 764−773. | |
Ge Z, Liu S T, Wang F, et al. 2021. YOLOX: exceeding YOLO series in 2021. arXiv: 2107.08430. | |
Girshick R. 2015. Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1440−1448. | |
Girshick R, Donahue J, Darrell T, et al. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580−587. | |
Glorot X, Bordes A, Bengio Y. 2020. Deep sparse rectifier neural networks. Proceedings of the fourteenth international conference on artificial intelligence and statistics. Proceedings of the fourteenth international conference on artifcial intelligence and statistics, 315−323. | |
He K M, Zhang X Y, Ren S Q, et al. 2015. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770−778. | |
Hou Q B, Zhou D Q, Feng J S. 2021. Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13713−13722. | |
Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7132−7141. | |
Huang S H, Lu Z C, Cheng R, et al. 2021. FaPN: feature-aligned pyramid network for dense image prediction. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 864−873. | |
Li C Y, Li L, Jiang H L, et al. 2022. YOLOv6: a single-stage object detection framework for industrial applications. arXiv: 2209.02976. | |
Lin T Y, Dollár P, Girshick R, et al. 2017. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2117−2125. | |
Liu S, Qi L, Qin H F, et al. 2018. Path aggregation network for instance segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8759−8768. | |
Liu W, Anguelov D, Erhan D, et al. 2016. SSD: single shot MultiBox detector//European conference on computer vision. Cham: Springer, 21−37. | |
Misra D. 2019. Mish: a self regularized non-monotonic activation function. arXiv: 1908.08681. | |
Osco L P, dos Santos de Arruda M, Marcato J Jr, et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 97- 106.
doi: 10.1016/j.isprsjprs.2019.12.010 |
|
Pan X R, Ge C J, Lu R, et al. 2021. On the integration of self-attention and convolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 815−825. | |
Redmon J, Divvala S, Girshick R, et al. 2016. You only look once: unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779−788. | |
Redmon J, Farhadi A. 2017. YOLO9000: better, faster, stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7263−7271. | |
Redmon J, Farhadi A. 2018. YOLOv3: an incremental improvement. arXiv: 1804.02767. | |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
|
Tan M X, Pang R M, Le Q V. 2020. EfficientDet: scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10781−10790. | |
Tian Z, Shen C H, Chen H, et al. 2019. FCOS: fully convolutional one-stage object detection. arxiv: 1904.01355. | |
Wang C S, Wang Q, Wu H R, et al. Low-altitude remote sensing opium poppy image detection based on modified YOLOv3. Remote Sensing, 2021, 13 (11): 2130.
doi: 10.3390/rs13112130 |
|
Wang C Y, Liao H Y, Wu Y H, et al. 2020. CSPNet: a new backbone that can enhance learning capability of CNN. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 390−391. | |
Woo S, Park J, Lee J Y, et al. 2018. CBAM: convolutional block attention module//European conference on computer vision. Cham: Springer, 3−19. | |
Zhang J, He L, Karkee M, et al. Branch detection for apple trees trained in fruiting wall architecture using depth features and regions-convolutional neural network (R-CNN). Computers and Electronics in Agriculture, 2018, 155, 386- 393.
doi: 10.1016/j.compag.2018.10.029 |
[1] | Jiandong Qi,Shangzi Zheng,Ziyi Chen,Zhongtian Ma. Wildlife Image Recognition of Infrared Cameras in Beijing Area Based on an Improvement ConvNeXt Model [J]. Scientia Silvae Sinicae, 2024, 60(8): 33-45. |
[2] | Jiandong Qi,Zhongtian Ma,Dehuai Zhang,Yun Tian. Wildlife Image Recognition in Miyun District Based on BS-ResNeXt-50 [J]. Scientia Silvae Sinicae, 2023, 59(8): 112-122. |
[3] | Anshun Ni,yongchun Wang,Dan Yang,Xueshu Sun,Jianren Ye. Toxicity of a New Compound Medicament 2% Avermectin · 6% Fluopyram on Bursaphelenchus xylophilus [J]. Scientia Silvae Sinicae, 2022, 58(8): 18-25. |
[4] | Jia Li,Lan Lan,Zuozhong Zhang,Wentao Yuan,Demin Gao,Shuqin Zong,Qiaolin Ye. Inversion Technology of Forest Fuel Moisture Content Based on Deep Learning [J]. Scientia Silvae Sinicae, 2022, 58(10): 47-58. |
[5] | Minjia Wang,Jianren Ye,Yusheng Tu,Fangping Du. Screening of Wood Rot Fungi for Treating the Infected Wood by Bursaphelenchus xylophilus [J]. Scientia Silvae Sinicae, 2021, 57(6): 93-102. |
[6] | Yan Zhou,Wenping Liu,Youqing Luo,Shixiang Zong. Small Object Detection for Infected Trees Based on the Deep Learning Method [J]. Scientia Silvae Sinicae, 2021, 57(3): 98-107. |
[7] | Ying Guo,Zengyuan Li,Erxue Chen,Xu Zhang,Lei Zhao,Yan Chen,Yahui Wang. A Deep Learning Method for Forest Fine Classification Based on High Resolution Remote Sensing Images: Two-Branch FCN-8s [J]. Scientia Silvae Sinicae, 2020, 56(3): 48-60. |
[8] | Mingwei Shao,Junyu Dong. A New Algorithm for Automatic Optimizing Cross-Cut Saw Based on Deep Learning Algorithm [J]. Scientia Silvae Sinicae, 2020, 56(12): 123-129. |
[9] | Ye Jianren. Epidemic Status of Pine Wilt Disease in China and Its Prevention and Control Techniques and Counter Measures [J]. Scientia Silvae Sinicae, 2019, 55(9): 1-10. |
[10] | Sun Tingyu, Wang Yanli, Shen Liyuan, Wu Xiaoqin, Zhu Lihua, Ye Jianren. Impact of Medium Components on Somatic Embryo Maturation in Pinus thunbergii [J]. Scientia Silvae Sinicae, 2019, 55(4): 178-186. |
[11] | Lin Li, Zhou Lei, Pan Jun, Kang Lipeng, Ye Jianren, Zhu Lihua. Pathogenicity of Aseptic and Germ-Carrying Bursaphelenchus xylophilus on Pinus densiflora [J]. Scientia Silvae Sinicae, 2017, 53(5): 82-87. |
[12] | Zhan Maokui, Yang Zhongqi, Wang Xiaoyi, Lai Yanxue, Zhang Yifeng. Capacity of Transmitting Bursaphelenchus xylophilus by the Vector Monochamus alternatus Adults [J]. Scientia Silvae Sinicae, 2014, 50(7): 74-81. |
[13] | Xu Fuyuan;Zheng Huaying;Liu Yunpeng;Xie Chunxia;Xu Ming;Zhao Zhendong. Resistance Analysis of Pinus massoniana Provenances to Maturation Feedings by the Adult of Monochamus alternatus and Bursaphelenchus xylophilus [J]. Scientia Silvae Sinicae, 2011, 47(1): 101-106. |
[14] | Xu Huachao;Xu Jinhua;Zhang Liqin;Lin Haiping;Yang Ping;Cheng Jianming. Virulence of Bacillus thuringiensis to Monochamus alternatus and Its biological Characteristics [J]. Scientia Silvae Sinicae, 2010, 46(4): 151-155. |
[15] | Chen Yao.;Wang Laifa;Piao Chungen;Zhu Tianhui;Shin Sangchul;Chung Yeongjin. Effects of Wood Rotting Fungi on Stumps of Dead Wood Caused by PWN(Bursaphelenchus xylophilus) [J]. Scientia Silvae Sinicae, 2008, 44(8): 78-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||