|
程昱之, 钟丽辉, 孙永科. 木材识别技术研究综述. 农业技术与装备, 2021, (1): 125- 128.
doi: 10.3969/j.issn.1673-887X.2021.01.054
|
|
Cheng Y Z, Zhong L H, Sun Y K. Review of wood identification technology. Agricultural Technology & Equipment, 2021, (1): 125- 128.
doi: 10.3969/j.issn.1673-887X.2021.01.054
|
|
程昱之, 钟丽辉, 何 鑫, 等. 基于改进K-means聚类与水平集的木材横截面管孔分割. 森林工程, 2022, 38 (1): 42- 51.
|
|
Cheng Y Z, Zhong L H, He X, et al. Segmentation of wood cross-section pore based on improved K-means clustering and level-set. Forest Engineering, 2022, 38 (1): 42- 51.
|
|
戴天虹, 翟 冰. 基于改进EfficientNet的木材识别研究. 森林工程, 2023, 39 (4): 93- 100.
|
|
Dai T H, Zhai B. Wood recognition research based on improved EfficientNet. Forest Engineering, 2023, 39 (4): 93- 100.
|
|
付立岩, 冯国红, 刘旭铭. 基于多元经验模态分解的可见/近红外光谱识别木材研究. 森林工程, 2023, 39 (4): 101- 109.
|
|
Fu L Y, Feng G H, Liu X M. Wood recognition by visible/near infrared spectroscopy based on multivariate empirical mode decomposition. Forest Engineering, 2023, 39 (4): 101- 109.
|
|
李 楠. 2018. 一种基于卷积神经网络的轻量级木材图像识别模型研究. 杭州: 浙江农林大学.
|
|
Li N. 2018. A lightweight wood image recognition model based on convolutional neural networks. Hangzhou: Zhejiang A & F University[in Chinese]
|
|
宿恒硕, 吕 军, 丁志平, 等. 基于改进残差神经网络的木材识别算法. 林业科学, 2021, 57 (12): 147- 154.
|
|
Su H S, Lü J, Ding Z P, et al. Wood identification algorithm based on improved residual neural network. Scientia Silvae Sinicae, 2021, 57 (12): 147- 154.
|
|
杨霄霞. 2022. 基于红木微观结构的分类与识别算法研究. 济南: 山东建筑大学.
|
|
Yang X X. 2022. Research on classification and recognition algorithm based on rosewood microstructure. Jinan: Shandong Jianzhu University. [in Chinese]
|
|
尹江苹, 蒋劲东, 高瑞清, 等. CITES公约木材树种管制及我国进口濒危木材贸易现状. 木材工业, 2019, 33 (1): 25- 28, 37.
|
|
Yin J P, Jiang J D, Gao R Q, et al. Current status of CITES listed timber species and relevant imports to China. China Wood Industry, 2019, 33 (1): 25- 28, 37.
|
|
赵子宇, 杨霄霞, 郭 慧, 等. 基于卷积神经网络模型的木材宏、微观辨识方法. 林业科学, 2021, 57 (6): 134- 143.
doi: 10.11707/j.1001-7488.20210615
|
|
Zhao Z Y, Yang X X, Guo H, et al. Recognition method of wood macro-and micro-structure based on convolution neural network. Scientia Silvae Sinicae, 2021, 57 (6): 134- 143.
doi: 10.11707/j.1001-7488.20210615
|
|
Filho P L P, Oliveira L S, Nisgoski S, et al. Forest species recognition using macroscopic images. Machine Vision and Applications, 2014, 25 (4): 1019- 1031.
doi: 10.1007/s00138-014-0592-7
|
|
Geirhos R, Jacobsen J H, Michaelis C, et al. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2020, 2, 665- 673.
doi: 10.1038/s42256-020-00257-z
|
|
Haralick R M, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6): 610-621.
|
|
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV: USA, IEEE, 770−77.
|
|
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems, 2012, 25 (2): 1097- 1105.
|
|
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791
|
|
Lens F, Liang C, Guo Y H, et al. Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 2020, 41 (4): 660- 680.
doi: 10.1163/22941932-bja10029
|
|
Martins J, Oliveira L S, Nisgoski S, et al. A database for automatic classification of forest species. Machine Vision and Applications, 2013, 24 (3): 567- 578.
doi: 10.1007/s00138-012-0417-5
|
|
Moulin J C, Lopes D J V, Mulin L B, et al. Microscopic identification of Brazilian commercial wood species via machine-learning. CERNE, 2022, 28 (1): 1- 9.
|
|
Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29 (1): 51- 59.
doi: 10.1016/0031-3203(95)00067-4
|
|
Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381 (6583): 607- 609.
doi: 10.1038/381607a0
|
|
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
|