Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (12): 71-77.doi: 10.11707/j.1001-7488.LYKX20210495
• Research papers • Previous Articles Next Articles
Meng Zhang1(),Xiuhua Fan1,*(
),Qingmin Yue2,Zhuoxiu Han2,Yixin Huang1
Received:
2021-07-03
Accepted:
2023-12-01
Online:
2023-12-25
Published:
2024-01-08
Contact:
Xiuhua Fan
E-mail:zhangmeng0897@126.com;blfanxh@bjfu.edu.cn
CLC Number:
Meng Zhang,Xiuhua Fan,Qingmin Yue,Zhuoxiu Han,Yixin Huang. Effects of Biotic and Abiotic Factors on Productivity of Coniferous and Broad-LeavedMixed Forest in Jiaohe, Jilin Province[J]. Scientia Silvae Sinicae, 2023, 59(12): 71-77.
Table 1
The statistical information of basic variables in the sampling plot"
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
保留木生产力 Biomass increment of survivors/ (t·hm–2a–1) | 0.99~11.73 | 3.30 | 1.29 |
进阶木生产力 Biomass increment of recruits/ ( t·hm–2a–1) | 0.00~0.13 | 0.02 | 0.02 |
死亡量 Biomass mortality/ ( t·hm–2a–1) | 0.03~44.68 | 1.48 | 2.49 |
生物量净变化量 Net biomass change/ (t·hm–2a–1) | –41.46~10.03 | 1.84 | 2.80 |
单位面积胸高断面积 Basal area per unit stand area/ (m2· hm–2) | 14.10~88.05 | 30.04 | 7.35 |
海拔 Elevation/ m | 468.57~486.49 | 477.24 | 4.20 |
坡度 Slope/ (°) | 0.62~24.16 | 4.71 | 4.27 |
坡向 Aspect/ (°) | 0.89~359.26 | 124.18 | 85.05 |
Table 2
The formulas of species diversity and degree of tree differentiation in the studied forest"
指数 Index | 计算公式 Formula |
稀释物种丰富度 Rarefied species richness | |
物种辛普森指数 Simpson’s diversity index | |
胸径辛普森指数 DBH Simpson’s diversity index | |
胸径变异系数 Coefficient of DBH variation |
Table 3
The statistical results of biodiversity and degree of tree differentiation"
指数 Index | 变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
生物多样性 Biodiversity | 稀释物种丰富度 Rarefied species richness | 5.67~12.09 | 8.87 | 1.14 |
物种辛普森指数 Simpson's diversity index | 0.64~0.92 | 0.84 | 0.05 | |
系统发育多样性指数 Phylogenetic diversity index | 891.92~ 1 931.12 | 1 449.89 | 181.45 | |
林木分化 程度 Degree of tree differentiation | 胸径辛普森指数DBH Simpson's diversity index | 0.73~0.95 | 0.89 | 0.04 |
胸径变异系数Coefficient of DBH variation | 0.58~2.08 | 1.14 | 0.20 |
Table 4
Results of multiple regression model"
解释变量 Predictor | 保留木生产力 Biomass increment of survivors | 进阶木生产力 Biomass increment of recruits | 死亡量 Biomass mortality | |||||||||
系数 | 标准误 | 显著性 | 系数 | 标准误 | 显著性 | 系数 | 标准误 | 显著性 | ||||
Coefficients | Std. Error | P | Coefficients | Std. Error | P | Coefficients | Std. Error | P | ||||
单位面积胸高断面积 Basal area per unit stand area | 0.127 8 | 0.015 3 | < 0.000 1*** | –0.102 3 | 0.042 7 | 0.016 6* | 0.187 3 | 0.045 4 | <0.000 1*** | |||
林木分化程度 Tree differentiation degree | 胸径变异系数 Coefficient of DBH variation | 0.000 9 | 0.006 0 | 0.879 1 | 0.388 1 | 0.044 0 | < 0.000 1*** | –0.070 4 | 0.046 4 | 0.129 3 | ||
生物多样性Biodiversity | 物种辛普森指数 Simpson's diversity index | 0.002 2 | 0.007 9 | 0.780 8 | 0.018 7 | 0.051 9 | 0.718 3 | –0.006 7 | 0.024 0 | 0.779 8 | ||
系统发育多样性指数Phylogenetic diversity | 0.000 9 | 0.005 9 | 0.884 0 | 0.117 8 | 0.049 3 | 0.016 9* | –0.001 0 | 0.012 0 | 0.933 3 | |||
稀释物种丰富度 Rarefied species richness | 0.000 9 | 0.006 0 | 0.874 5 | –0.118 7 | 0.068 7 | 0.084 0 | –0.014 9 | 0.033 9 | 0.659 6 | |||
地形因子 Topographic factors | 坡向Aspect | 0.001 1 | 0.006 3 | 0.862 4 | 0.005 1 | 0.022 0 | 0.815 9 | 0.083 0 | 0.047 5 | 0.080 9 | ||
海拔Elevation | — | — | — | –0.177 2 | 0.043 8 | <0.000 1*** | –0.026 9 | 0.043 7 | 0.538 9 | |||
坡度Slope | –0.041 2 | 0.015 3 | 0.007 1** | –0.105 4 | 0.041 8 | 0.011 7* | –0.080 1 | 0.045 4 | 0.077 4 | |||
模型校正R2 Adjusted R square | 12.07% | 22.62% | 3.51% |
郭志华, 臧润国, 蒋有绪. 生物多样性的形态、维持机制及其宏观研究方法. 林业科学, 2002, 38 (6): 116- 124.
doi: 10.3321/j.issn:1001-7488.2002.06.020 |
|
Guo Z H, Zang R G, Jiang Y X. The formation and maintenance mechanisms of biodiversity and the research techniques for biodiversity. Scientia Silvae Sinicae, 2002, 38 (6): 116- 124.
doi: 10.3321/j.issn:1001-7488.2002.06.020 |
|
谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 2017, 41 (11): 1149- 1156.
doi: 10.17521/cjpe.2016.0321 |
|
Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 2017, 41 (11): 1149- 1156.
doi: 10.17521/cjpe.2016.0321 |
|
温 纯, 金光泽. 功能多样性对典型阔叶红松林生产力的影响. 植物生态学报, 2019, 43 (2): 94- 106.
doi: 10.17521/cjpe.2018.0312 |
|
Wen C, Jin G Z. Effects of functional diversity on productivity in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 2019, 43 (2): 94- 106.
doi: 10.17521/cjpe.2018.0312 |
|
吴兆飞, 张雨秋, 张忠辉, 等. 东北温带森林林分结构与生产力关系研究. 北京林业大学学报, 2019, 41 (5): 48- 55.
doi: 10.13332/j.1000-1522.20190017 |
|
Wu Z F, Zhang Y Q, Zhang Z H, et al. Study on the relationship between forest structure and productivity oftemperate forests in northeast China. Journal of Beijing Forestry University, 2019, 41 (5): 48- 55.
doi: 10.13332/j.1000-1522.20190017 |
|
杨桂娟, 胡海帆, 孙洪刚, 等. 林分年龄, 造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响. 林业科学, 2019, 55 (11): 126- 136.
doi: 10.11707/j.1001-7488.20191114 |
|
Yang G J, Hu H F, Sun H G, et al. The formation and maintenance mechanisms of biodiversity and the research techniques for biodiversity. Scientia Silvae Sinicae, 2019, 55 (11): 126- 136.
doi: 10.11707/j.1001-7488.20191114 |
|
Ali A. Forest stand structure and functioning: Current knowledge and future challenges. Ecological Indicators, 2019, 98, 665- 677.
doi: 10.1016/j.ecolind.2018.11.017 |
|
Ali A, Mattsson E. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems. Science of the Total Environment, 2017, 598, 38- 48.
doi: 10.1016/j.scitotenv.2017.04.131 |
|
de Avila A L, van der Sande M T, Dormann C F, et al. Disturbance intensity is a stronger driver of biomass recovery than remaining tree-community attributes in a managed Amazonian forest. Journal of Applied Ecology, 2018, 55 (4): 1647- 1657.
doi: 10.1111/1365-2664.13134 |
|
Brienen R J W, Phillips O L, Feldpausch T R, et al. Long-term decline of the Amazon carbon sink. Nature, 2015, 519 (7543): 344- 348.
doi: 10.1038/nature14283 |
|
Chao K-J, Phillips O L, Gloor E, et al. 2008. Growth and wood density predict tree mortality in Amazon forests. Journal of Ecology, 96(2) : 281–292. | |
Coomes D A, Holdaway R J, Kobe R K, et al. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests: Forest growth and carbon sequestration rates. Journal of Ecology, 2012, 100 (1): 42- 64.
doi: 10.1111/j.1365-2745.2011.01920.x |
|
Faith D P. Conservation evaluation and phylogenetic diversity. Biological Conservation, 1992, 61 (1): 1- 10.
doi: 10.1016/0006-3207(92)91201-3 |
|
Finegan B, Peña-Claros M, de Oliveira A, et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 2015, 103 (1): 191- 201.
doi: 10.1111/1365-2745.12346 |
|
Fortunel C, Lasky J R, Uriarte M, et al. 2018. Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology, 99(10) : 2272–2283. | |
Fotis A T, Murphy S J, Ricart R D, et al. 2018. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 106(2) : 561–570. | |
Fox J. 2008. Applied regression analysis and generalized linear models. 2rd ed. Los Angeles: SAGE Publications. | |
Grime J P 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86(6) : 902–910. | |
Hao M, Messier C, Geng Y, et al. Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. European Journal of Forest Research, 2020, 139 (6): 959- 968.
doi: 10.1007/s10342-020-01298-0 |
|
Hao M, Zhang C, Zhao X, et al. Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecology and Evolution, 2018, 8 (5): 2395- 2406.
doi: 10.1002/ece3.3857 |
|
Houghton R A, Hall F, Goetz S J. Importance of biomass in the global carbon cycle: biomass in the global carbon cycle. Journal of Geophysical Research:Biogeosciences, 2009, 114 (G2): G00E03. | |
Lohbeck M, Poorter L, Martínez-Ramos M, et al. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 2015, 96 (5): 1242- 1252.
doi: 10.1890/14-0472.1 |
|
McDowell N, Allen C D, Anderson-Teixeira K, et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219 (3): 851- 869.
doi: 10.1111/nph.15027 |
|
Michaletz S T, Cheng D, Kerkhoff A J, et al. Convergence of terrestrial plant production across global climate gradients. Nature, 2014, 512 (7512): 39- 43.
doi: 10.1038/nature13470 |
|
Mori A S. Environmental controls on the causes and functional consequences of tree species diversity. Journal of Ecology, 2018, 106 (1): 113- 125.
doi: 10.1111/1365-2745.12851 |
|
Ouyang S, Xiang W, Wang X, et al. Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology, 2019, 107 (5): 2266- 2277.
doi: 10.1111/1365-2745.13194 |
|
Prado-Junior J A, Schiavini I, Vale V S, et al. Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 2016, 104 (3): 817- 827.
doi: 10.1111/1365-2745.12543 |
|
Purschke O, Schmid B C, Sykes M T, et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. Journal of Ecology, 2013, 101 (4): 857- 866. | |
Quesada C A, Phillips O L, Schwarz M, et al. 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9(6) : 2203–2246. | |
Ruiz-Benito P, Ratcliffe S, Jump A S, et al. 2017a. Functional diversity underlies demographic responses to environmental variation in European forests: Tree diversity and demography in European forests. Global Ecology and Biogeography, 26(2) : 128–141. | |
Ruiz-Benito P, Ratcliffe S, Zavala M A, et al. 2017b. Climate and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biology, 23(10) : 4162–4176. | |
Stephenson N L, Das A J, Condit R, et al. Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507 (7490): 90- 93. | |
van der Sande M T, Peña-Claros M, Ascarrunz N, et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 2017, 105 (5): 1223- 1234.
doi: 10.1111/1365-2745.12756 |
|
Yuan Z, Ali A, Wang S, et al. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of The Total Environment, 2018, 630, 422- 431.
doi: 10.1016/j.scitotenv.2018.02.125 |
|
Yuan Z, Ali A, Wang S, et al. Temporal stability of aboveground biomass is governed by species asynchrony in temperate forests. Ecological Indicators, 2019, 107, 105661. | |
Yue Q, Hao M, Li X, et al. Assessing biotic and abiotic effects on forest productivity in three temperate forests. Ecology and Evolution, 2020, 10 (14): 7887- 7900.
doi: 10.1002/ece3.6516 |
|
Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 2015, 103 (5): 1245- 1252.
doi: 10.1111/1365-2745.12425 |
|
Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis: Diversity and productivity relationships. Journal of Ecology, 2012, 100 (3): 742- 749.
doi: 10.1111/j.1365-2745.2011.01944.x |
[1] | Jiaming Wan,Jiang Lü,Yun Shi,Hang Xu,Zhiqiang Zhang. Effects of Diffuse Radiation on the Gross Primary Productivity of a Poplar Plantation [J]. Scientia Silvae Sinicae, 2023, 59(5): 1-10. |
[2] | Xingchang Wang,Fan Liu,Xue Sun,Zhen Jiao,Xiaofeng Sun,Quanzhi Zhang,Xiankui Quan,Chuankuan Wang. Intercomparison of Carbon Fluxes Measured with Eddy Covariance and Inventory Methods in Temperate Secondary Forest [J]. Scientia Silvae Sinicae, 2023, 59(3): 31-43. |
[3] | Ri Lu,Chen Wang,Ye Chen,Xixi Xu,Yue Hu,Zheng Chen,Jiaxi Cao,Shuhong Wu,Ling Li,He Gao. Carbon Credit Measurement Method for Mangrove Conservation Carbon Sink Project: a Case Study of Futian Mangrove Nature Reserve in Shenzhen [J]. Scientia Silvae Sinicae, 2023, 59(3): 44-53. |
[4] | Yuxing Zhang,Xuejun Wang. Productivity and Carbon Sink Capacity of Eucalyptus Plantations in China from 1973 to 2018 [J]. Scientia Silvae Sinicae, 2023, 59(3): 54-64. |
[5] | Yaxiong Zheng,Shaohui Fan,Xuan Zhang,Xiao Zhou,Fengying Guan. Productivity Dynamics of Moso Bamboo (Phyllostachys edulis) Forest after Strip Clearcutting [J]. Scientia Silvae Sinicae, 2023, 59(2): 22-29. |
[6] | Zhengya Jin,Chenyu Qian,Chengju Du,Tao Ma,Xiujun Wen,Cai Wang. Research Progress on the Interaction among Termites, Clay, and Ecological Environments [J]. Scientia Silvae Sinicae, 2023, 59(1): 143-150. |
[7] | Chunxiang Cheng,Min Yu,Zijun Mao,Lianni Xie,Yongcheng Zhang,Tao Sun,Zuomin Xu,Shuang Wu,Qianni Li,Jia Xu. Spatial-Temporal Evolution and Patterns of Abrupt Changs of NPP in Heilongjiang Province in the Process of Ecological Protection and Restoration in China [J]. Scientia Silvae Sinicae, 2022, 58(7): 23-31. |
[8] | Chen Liu,Chunyu Zhang,Xiuhai Zhao. Effects of Disturtance by Thinning on Productivity Stability of Conifer-Broadleaf Mixed Forest in Jiaohe, Jilin Province [J]. Scientia Silvae Sinicae, 2022, 58(3): 1-9. |
[9] | Ye Li,Yonghong Shi,Xianjin Xu,Faju Jing,Zhenliang Shi,Guohu Liu,Diqiang Li. Preliminary Survey on the Diversity of Mammalian and Avian in the Non-Protected Area of Burhan Buda Mountain, Qinghai Province, with Infrared Camera-Trapping Technology [J]. Scientia Silvae Sinicae, 2022, 58(12): 155-163. |
[10] | Xudong Chang,Guangze Jin. Effects of Topography and Soil Factors on the Decay of Living Trees of Korean Pine [J]. Scientia Silvae Sinicae, 2022, 58(11): 71-82. |
[11] | Shuijin Yu,Juan Wang,Haiyan He,Chunyu Zhang,Xiuhai Zhao. Driving Factors of the Temporal Stability of Biomass of Mixed Broadleaf-Conifer Forest [J]. Scientia Silvae Sinicae, 2022, 58(11): 181-190. |
[12] | Guangshuang Duan,Yali Zheng,Liang Hong,Xinyu Song,Liyong Fu. A Potential Productivity-Based Approach of Site Quality Evaluation for Larch Pure Forest and Birch-Aspen Mixed Forest [J]. Scientia Silvae Sinicae, 2022, 58(10): 1-9. |
[13] | Rundong Li,Wendong Tian,Haiqun Yu,Xinhao Li,Chuan Jin,Peng Liu,Tianshan Zha,Yun Tian. Forest Phenology Estimation and Its Relationships with Corresponding Meteorological Factors Based on Digital Images in Songshan, Beijing, China [J]. Scientia Silvae Sinicae, 2022, 58(1): 89-97. |
[14] | Wanze Zhu. Advances in the Carbon Sequestration of Mature Forests [J]. Scientia Silvae Sinicae, 2020, 56(3): 117-126. |
[15] | Chao Wang,Yazu Zhang,Jianwen Zeng,Jie Gao,Lu Yan,Dongping Liu. Reproductive Status and Population Size of Wild Crested Ibis (Nipponia nippon) in China [J]. Scientia Silvae Sinicae, 2020, 56(11): 143-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||