Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (10): 175-189.doi: 10.11707/j.1001-7488.LYKX20240478
• Research papers • Previous Articles
Haibin Wang1,Cun Chu1,Yaoxiang Li1,*(
),Guangda Liu2
Received:2024-08-07
Online:2025-10-25
Published:2025-11-05
Contact:
Yaoxiang Li
E-mail:yaoxiangli@nefu.edu.cn
CLC Number:
Haibin Wang,Cun Chu,Yaoxiang Li,Guangda Liu. Rigid-Flexible Coupling Simulation Analysis and Test of Portable Blueberry Harvester[J]. Scientia Silvae Sinicae, 2025, 61(10): 175-189.
Table 1
Connection relationship of the moving parts of the harvester in Adams"
| 序号 No. | 运动副 Kinematic pair | 连接件 Connecting parts | 被连接件 Connected parts | 运动类型 Type of movement |
| 1 | 固定副Fixed joint | 手电钻Hand drill | 曲柄轴Crank shaft | 相对静止Relative static |
| 2 | 转动副Revolved joint | 曲柄轴Crank shaft | 曲柄Crank | 转动Rotation |
| 3 | 固定副Fixed joint | 关节轴承a Joint bearing a | 连杆轴Connecting rod shaft | 相对静止Relative static |
| 4 | 固定副Fixed joint | 连杆轴Connecting rod shaft | 关节轴承b Joint bearing b | 相对静止Relative static |
| 5 | 转动副Revolved joint | 曲柄Crank | 关节轴承a Joint bearing a | 转动Rotation |
| 6 | 固定副Fixed joint | 推杆固定轴a Push rod fixed shaft a | 推杆轴Push rod shaft | 相对静止Relative static |
| 7 | 固定副Fixed joint | 推杆轴Push rod shaft | 推杆固定轴b Push rod fixed shaft b | 相对静止Relative static |
| 8 | 转动副Revolved joint | 关节轴承b Joint bearing b | 推杆固定轴a Push rod fixed shaft a | 转动Rotation |
| 9 | 固定副Fixed joint | 滑块连接件Slider connector | 滑块固定螺丝Slider fixing screw | 相对静止Relative static |
| 10 | 固定副Fixed joint | 滑块固定螺丝Slider fixing screw | T型滑块T-slider | 相对静止Relative static |
| 11 | 固定副Fixed joint | 推杆轴Push rod shaft | 滑块连接件Slider connector | 相对静止Relative static |
| 12 | 固定副Fixed joint | 导轨Guide rail | 导轨架板Guide rail rack plate | 相对静止Relative static |
| 13 | 固定副Fixed joint | 导轨架板Guide rail rack plate | 角件Corner piece | 相对静止Relative static |
| 14 | 固定副Fixed joint | 角件Corner piece | 导轨连接板Guide rail connecting plate | 相对静止Relative static |
| 15 | 直线副Translation joint | T型滑块T-slider | 导轨Guide rail | 直线运动Rectilinear motion |
| 16 | 固定副Fixed joint | 推杆轴Push rod shaft | 卡箍轴Clamp shaft | 相对静止Relative static |
| 17 | 固定副Fixed jointv | 卡箍轴Clamp shaft | 卡箍Clamp | 相对静止Relative static |
| 18 | 固定副Fixed joint | 卡箍Clamp | 卡箍锁紧螺母Clamp lock nut | 相对静止Relative static |
Table 3
Serial numbers table of blueberry at different growth positions of the plant"
| 序号 No. | 编号 Serial numbers | 蓝莓果实生长位置 Growth location of blueberry fruits growth | 果实质量 Mass of fruit/g |
| 1 | A1 | 主干底部侧枝末梢1/3处生长的末枝对应的蓝莓果实采摘力 The picking force of the blueberry fruit corresponding to the last branch growing at one-third of the tip of the side branch at the bottom of the main trunk | 1 |
| 2 | A2 | 主干中部侧枝末梢1/3处生长的末枝对应的蓝莓果实采摘力 The picking force of the blueberry fruit corresponding to the last branch growing at one-third of the tip of the middle side branch of the main trunk | 1 |
| 3 | A4 | 主干顶部侧枝末梢1/3处生长的末枝对应的蓝莓果实采摘力 The picking force of the blueberry fruit corresponding to the last branch growing at one-third of the tip of the side branch at the top of the main trunk | 1 |
| 4 | B1 | 主干顶端侧枝根部处的蓝莓果实 The blueberry fruit at the root of the side branch at the top of the main trunk | 1 |
| 5 | B2 | 主干顶端侧枝中部处的蓝莓果实 The blueberry fruit at the middle of the side branch at the top of the main trunk | 1 |
| 6 | B3 | 主干顶端侧枝末梢处的蓝莓果实 The blueberry fruit at the tip of the side branch at the top of the main trunk | 1 |
Table 5
Table of single factor picking test"
| 试验因素 Test factors | 试验水平 Test levels | 采摘效率 Picking efficiency/ (kg·min?1) | 成熟果实采净率 Mature fruit picking rate (%) | 生果脱落率 Unripe fruit shedding rate (%) | 果实损伤率 Fruit damage rate (%) |
| 行程速比系数K Coefficients of travel speed variation | 1.3 | 0.19 | 83.20 | 7.20 | 5.90 |
| 1.5 | 0.17 | 80.10 | 6.80 | 5.50 | |
| 1.7 | 0.23 | 84.50 | 8.10 | 7.10 | |
| 手电钻转速n Rotation speed of the hand drill/(r·min?1) | 150 | 0.16 | 79.10 | 8.10 | 4.30 |
| 180 | 0.18 | 85.60 | 8.70 | 5.70 | |
| 210 | 0.22 | 86.10 | 9.60 | 7.30 |
| 鲍玉冬, 梁 钊, 赵彦玲, 等. 蓝莓采收机高通过性自行走装置设计及性能研究. 农业工程学报, 2018a, 34 (24): 36- 45. | |
| Bao Y D, Liang Z, Zhao Y L, et al. Design and performance of high trafficability self-propelled device of blueberry harvester. Transactions of the Chinese Society of Agricultural Engineering, 2018a, 34 (24): 36- 45. | |
| 鲍玉冬, 杨 闯, 赵彦玲, 等. 蓝莓灌木振动特性分析及数值模拟. 哈尔滨理工大学学报, 2018b, 23 (1): 18- 22. | |
| Bao Y D, Yang C, Zhao Y L, et al. Vibration characteristics analysis and experiment of the blueberry shrub. Journal of Harbin University of Science and Technology, 2018b, 23 (1): 18- 22. | |
| 陈京辉. 2022. 基于接触力学的蓝莓抓取软体机械手设计研究. 天津: 天津科技大学. | |
| Chen J H. 2022. Research on design of blueberry grasping soft manipulator based on contact mechanics. Tianjin: Tianjin University of Science & Technology. [in Chinese] | |
| 陈嘉瑶, 王 英, 梁冬泰, 等. 小型化轴向振动式蓝莓采摘机设计与试验. 机械设计, 2021, 38 (4): 37- 43. | |
| Chen J Y, Wang Y, Liang D T, et al. Design and experiment of the miniaturized axial-vibrating blueberry picker. Journal of Machine Design, 2021, 38 (4): 37- 43. | |
| 迟夜朦. 2014. 笃斯越橘快繁体系研究. 哈尔滨: 东北农业大学. | |
| Chi Y M. 2014. Research on the micropropagation of Vaccinium uliginosum. Harbin: Northeast Agricultural University. [in Chinese] | |
|
耿 雷, 郭艳玲, 王海滨. 高丛蓝莓采摘机采摘系统设计与试验. 农业机械学报, 2016, 47 (3): 67- 74, 81.
doi: 10.6041/j.issn.1000-1298.2016.03.010 |
|
|
Geng L, Guo Y L, Wang H B. Picking system design and experiment for highbush blueberry picking machine. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (3): 67- 74, 81.
doi: 10.6041/j.issn.1000-1298.2016.03.010 |
|
|
郭艳玲, 鲍玉冬, 何培庄, 等. 手推式矮丛蓝莓采摘机设计与试验. 农业工程学报, 2012, 28 (7): 40- 45.
doi: 10.3969/j.issn.1002-6819.2012.07.007 |
|
|
Guo Y L, Bao Y D, He P Z, et al. Design and experiment of hand-push lowbush blueberry picking machine. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (7): 40- 45.
doi: 10.3969/j.issn.1002-6819.2012.07.007 |
|
|
郭艳玲, 聂宏宇, 李志鹏, 等. 蓝莓采摘实验台的设计与试验研究. 农机化研究, 2020, 42 (6): 130- 135, 141.
doi: 10.3969/j.issn.1003-188X.2020.06.023 |
|
|
Guo Y L, Nie H Y, Li Z P, et al. Design and experimental study of blueberry picking experiment platform. Journal of Agricultural Mechanization Research, 2020, 42 (6): 130- 135, 141.
doi: 10.3969/j.issn.1003-188X.2020.06.023 |
|
|
何家成, 汪 洋, 刘宏博, 等. 便携式果园采摘机设计. 农机化研究, 2018, 40 (5): 83- 87.
doi: 10.3969/j.issn.1003-188X.2018.05.015 |
|
|
He J C, Wang Y, Liu H B, et al. Design of portable orchard picking machine. Journal of Agricultural Mechanization Research, 2018, 40 (5): 83- 87.
doi: 10.3969/j.issn.1003-188X.2018.05.015 |
|
| 李志鹏, 张 超, 王博男, 等. 基于振动策略的蓝莓采摘机的设计研究. 森林工程, 2020, 36 (2): 55- 61. | |
| Li Z P, Zhang C, Wang B N, et al. Research on design of blueberry picker based on vibration strategy. Forest Engineering, 2020, 36 (2): 55- 61. | |
|
王海滨, 李志鹏, 姜雪松, 等. 基于槽型凸轮传动的蓝莓采摘机设计与试验. 农业机械学报, 2018, 49 (10): 80- 91.
doi: 10.6041/j.issn.1000-1298.2018.10.010 |
|
|
Wang H B, Li Z P, Jiang X S, et al. Design and experiment on blueberry picking machine based on groove cam drive. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (10): 80- 91.
doi: 10.6041/j.issn.1000-1298.2018.10.010 |
|
|
徐 潺, 范 艳, 张成玉, 等. 适用于山地手持式电动蓝莓采摘机的研制. 农机化研究, 2021, 43 (12): 133- 137.
doi: 10.3969/j.issn.1003-188X.2021.12.024 |
|
|
Xu C, Fan Y, Zhang C Y, et al. Research and development of hand-held pure electric blueberry picker suitable for mountainous regions. Journal of Agricultural Mechanization Research, 2021, 43 (12): 133- 137.
doi: 10.3969/j.issn.1003-188X.2021.12.024 |
|
| 闫珍奇. 2020. 梳刷振动式高丛蓝莓采收机的总体设计与试验研究. 杭州: 浙江农林大学. | |
| Yan Z Q. 2020. Design and experimental research on the comb-brush vibrating highbush blueberry harvester. Hangzhou: Zhejiang A & F University. [in Chinese] | |
| 张长青, 王 倩, 黄正金, 等. 江苏省蓝莓产业发展现状与展望. 北方园艺, 2021, (18): 155- 160. | |
| Zhang C Q, Wang Q, Huang Z J, et al. Development and prospect of blueberry industry in Jiangsu Province. Northern Horticulture, 2021, (18): 155- 160. | |
|
Brown G K, Schulte N L, Timm E J, et al. Estimates of mechanization effects on fresh blueberry quality. Applied Engineering in Agriculture, 1996, 12 (1): 21- 26.
doi: 10.13031/2013.25435 |
|
|
Casamali B, Williamson J G, Kovaleski A P, et al. Mechanical harvesting and postharvest storage of two southern highbush blueberry cultivars grafted onto Vaccinium arboreum rootstocks. HortScience, 2016, 51 (12): 1503- 1510.
doi: 10.21273/HORTSCI11323-16 |
|
| Christie D E. 1967. Berry harvester. United States: 3325984, 1967-6-20. | |
|
Das A K, Esau T J, Zaman Q U, et al. Machine vision system for real-time debris detection on mechanical wild blueberry harvesters. Smart Agricultural Technology, 2023, 4, 100166.
doi: 10.1016/j.atech.2022.100166 |
|
| Erdoǧan D, Güner M, Dursun E, et al. Mechanical harvesting of apricots. Biosystems Engineering, 2003, 85 (5): 19- 28. | |
|
Esau K, Esau T, Zaman Q, et al. Effective use of a variable speed blower fan on a mechanical wild blueberry harvester. Applied Engineering in Agriculture, 2018, 34 (5): 831- 840.
doi: 10.13031/aea.12818 |
|
| Farooque A A, Zaman Q U, Groulx D, et al. Effect of ground speed and header revolutions on the picking efficiency of a commercial wild blueberry harvester. Applied Engineering in Agriculture, 2014, 30 (4): 535- 546. | |
|
Haydar Z, Esau T J, Farooque A A, et al. Deep learning supported machine vision system to precisely automate the wild blueberry harvester header. Scientific Reports, 2023, 13 (1): 10198.
doi: 10.1038/s41598-023-37087-z |
|
| Hedden S, Gaston H P, Levin J H. Harvesting blueberries mechanically. Michigan Agriculture Experiment Station Bulletin, 1959, 42, 24- 34. | |
| Hu B, Yang W Q, Andrews H, et al. Towards a semi-mechanical harvesting platform system for harvesting blueberries with fresh-market quality. Acta Horticulturae, 2017, (1180): 335- 340. | |
| Mann D D, Petkau D S. Removal of sea buckthorn (Hippophae rhamnoides L. ) berries by shaking. Canadian Biosystems Engineering, 2002, 43 (2): 23- 28. | |
| Mckibben H E, Jones P F. 1962. Oscillating blueberry stripper: 3023565. 1962−03−06. | |
| Peterson D L, Whiting M D, Wolford S D. Fresh-market quality tree fruit harvester, Part I: sweet cherry. Applied Engineering in Agriculture, 2003, 19 (5): 539- 543. | |
|
Sargent S A, Takeda F, Williamson J G, et al. Harvest of southern highbush blueberry with a modified, over-the-row mechanical harvester: use of handheld shakers and soft catch surfaces. Agriculture, 2019, 10 (1): 4.
doi: 10.3390/agriculture10010004 |
|
| Sarig Y. Robotics of fruit harvesting: a state-of-the-art review. Journal of Agricultural Engineering Research, 2003, 54 (4): 265- 280. | |
| Strik B. Blueberry production and research treands in north America. Acta Horticulturae, 2006, 715, 173- 184. | |
|
Takeda F, Krewer G, Li C, et al. Techniques for increasing machine harvest efficiency in highbush blueberry. HortTechnology, 2013, 23 (4): 430- 436.
doi: 10.21273/HORTTECH.23.4.430 |
|
|
Takeda F, Yang W, Li C Y, et al. Applying new technologies to transform blueberry harvesting. Agronomy, 2017, 7 (2): 33.
doi: 10.3390/agronomy7020033 |
|
|
Yu P, Li C, Takeda F, et al. Measurement of mechanical impacts created by rotary, slapper, and sway blueberry mechanical harvesters. Computers and Electronics in Agriculture, 2014, 101, 84- 92.
doi: 10.1016/j.compag.2013.12.001 |
| [1] | Liyang Yao,Yue Zhu,Yaning Wang,Shuai Pang. Impact of Tire Size on the Driving Performance of Small Wheeled Mobile Platforms in Forest [J]. Scientia Silvae Sinicae, 2025, 61(2): 180-189. |
| [2] | Chunmei Yang,Tongbin Liu,Yaqiang Ma,Yucheng Ding,Jincong Wang,Song Hu,Wenlong Song. Optimization of Paint Diffusion Angle and Uniformity in Wood Spraying Using Response Surface Method [J]. Scientia Silvae Sinicae, 2024, 60(6): 136-147. |
| [3] | Yu Zhang,Huaiqing Zhang,Feng An,Ling Jiang,Ting Yun. A Quantitative Analysis Method of Solar Shortwave Radiation within Forest Canopy Based on a Computer Simulation Model [J]. Scientia Silvae Sinicae, 2024, 60(4): 16-30. |
| [4] | Mingli Qiang,Peng Xiao,Zhe Yuan,Yanwei Su,Lang Zhu,Xinyue Qin,Guanben Du. Comparative Study on Bearing Performance of Pseudotsuga menziesii and SPF (Spruce-Pine-Fir) Parallel Chord Wood Truss [J]. Scientia Silvae Sinicae, 2024, 60(4): 147-156. |
| [5] | Jiuqing Liu,Binhai Zhu,Chunmei Yang,Hang Yu. Dynamic Performance Analysis and Experimental Investigation of Hole Digging Mechanism of Tree Planting Machine [J]. Scientia Silvae Sinicae, 2022, 58(12): 62-74. |
| [6] | Chunmei Yang,Lijia Ning,Qingwei Liu,Qian Miao,Yan Ma,Jiuqing Liu. Temperature Field Simulation Based on Laminated Object Manufacturing(LOM) Thin Wood Layer Thermal Compression Process [J]. Scientia Silvae Sinicae, 2021, 57(10): 120-127. |
| [7] | Zongying Fu,Yingchun Cai,Xin Gao,Fan Zhou,Jinghui Jiang,Yongdong Zhou. Simulation of Drying Strain Based on Artificial Neural Network Model [J]. Scientia Silvae Sinicae, 2020, 56(6): 76-82. |
| [8] | Wei Wang,Yunting Wang,Wenlong Song. Simulation on Cluster Layout Wooden Furniture Production Line Based on FlexSim [J]. Scientia Silvae Sinicae, 2020, 56(4): 135-142. |
| [9] | Jian Zhang,Gang Lei,Lianghua Qi. Temporal and Spatial Dynamics and Scenario Simulation of Water Yield in Danjiangkou Reservoir Area [J]. Scientia Silvae Sinicae, 2020, 56(11): 12-20. |
| [10] | Xiujin Yuan, Wenfa Xiao, Jingpin Lei, Lei Pan, Xiaorong Wang, Hongxia Cui, Wenjie Hu. Spatial Variability of Throughfall and Stemflow in Pinus massoniana Plantation in Three Gorges Reservoir Area [J]. Scientia Silvae Sinicae, 2020, 56(1): 10-19. |
| [11] | Xiao He,Yuancai Lei,Chunquan Xue,Qihu Xu,Haikui Li,Lei Cao. Carbon Density Uncertainty Estimates for Schima superba in Guangdong Province [J]. Scientia Silvae Sinicae, 2019, 55(11): 163-171. |
| [12] | Sun Xinglin, Zhang Yuqing, Zhang Jutao, Qin Shugao, Zhou Jinxing. Numerical Simulation on the Influence of Subgrade of Qinghai-Tibet Railway on Wind-Sand Movement [J]. Scientia Silvae Sinicae, 2018, 54(7): 73-83. |
| [13] | Wang Zi, Zhou Xianwu, Wu Guofang, Zhong Yong, Ren Haiqing, Zhao Rongjun. Load-Carrying Capacity of Larix kaempferi Light Wood Trusses [J]. Scientia Silvae Sinicae, 2018, 54(2): 137-144. |
| [14] | Zhang Shaoqun, Yan Jiaxiong, Cao Lei, Wang Haitao. Crack Propagation Simulation of Hot Mill Grinding with Wood Based on ADAMS and ABAQUS [J]. Scientia Silvae Sinicae, 2018, 54(12): 149-156. |
| [15] | Xing Jingchen, Zhou Yucheng, Yu Yuxiang, Li Lufei, Chang Jianmin. Simulation on Heat Storage and Release Performance of Fatty Acid Phase Change Floor Used for Ground with Heating System [J]. Scientia Silvae Sinicae, 2018, 54(11): 20-28. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||