Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (7): 231-240.doi: 10.11707/j.1001-7488.LYKX20230711
• Research papers • Previous Articles
Can Wang1,2(), Masoudi Abolfazl3,Min Wang4,Ze Zhang1,Jingkun Cao1,Yuhao Xu2,Zhijun Yu1,*(
),Jingze Liu1,*(
)
Received:
2024-11-23
Online:
2025-07-20
Published:
2025-07-25
Contact:
Zhijun Yu,Jingze Liu
E-mail:wangcan@hebtu.edu.cn;yzj116@163.com;liujingze@hebtu.edu.cn
CLC Number:
Can Wang, Masoudi Abolfazl,Min Wang,Ze Zhang,Jingkun Cao,Yuhao Xu,Zhijun Yu,Jingze Liu. Characteristics of Soil Pathogenic Bacteria and Their Response to Microplastics under Typical Land-use Conversion Patterns in Xiong’an New Area[J]. Scientia Silvae Sinicae, 2025, 61(7): 231-240.
Table 1
Typical land-use conversion patterns and sampling information"
土地利用转变方式 Land-use conversion patterns | 土地利用现状分类(一级类) Current land use classification (first category) | 生境类型 Habitat types | 样品名 Sample name | 采样坐标点 Sampling sites |
水稻田→草地 Rice paddy → Grassland | 耕地→草地 Farmland → Grassland | 水生→陆生 Aquatic habitat → Terrestrial habitat | AR_TG | 38°53′17″N,115°45′34″E |
水稻田→人工湿地(主要植物为芦苇) Rice paddy → Constructed wetland (the main plant is Phragmites australis) | 耕地→水域用地 Farmland → Wetland | 陆生→水生 Terrestrial habitat → Aquatic habitat | AR_ACW | 38°54′07″N,115°48′12″E |
玉米地 →人工湿地(主要植物为芦苇)Maize land → Constructed wetland (the main plant is Phragmites australis) | 耕地→水域用地 Farmland → Wetland | 陆生→水生 Terrestrial habitat → Aquatic habitat | THM_ACW | 38°53′59″N,115°47′25″E |
草地→建设用地 Grassland → Urban infrastructure construction | 草地→商服用地/住宅用地/公共管理与公共服务用地 Grassland → Commercial and service land / residential land / public administration and public service land | 无变化 No change | TG_THC | 39°03′26″N,115°55′16″E |
玉米地→林地(杜仲) Maize land → Plantation (Eucommia ulmoides) | 耕地→林地 Farmland → Woodland | 无变化 No change | THM_TF | 38°53′39″N,115°45′02″E |
小麦地→玉米地(轮作) Wheat land → Maize land (rotation) | 耕地→耕地 Farmland →Farmland | 无变化 No change | TW_THM | 38°56′15″N,115°45′31″E |
Table 2
The communities indices of Alpha diversity of animal, plant, and zoonotic pathogens; the community assembly of null community model; community dissimilarity using βMNTD, Bray-Curtis, and Jaccard distance for the typical land-use conversion in the Xiong'an New Area"
指数Index | AR_TG | AR_ACW | THM_ACW | TG_THC | THM_TF | TW_THM | |
Alpha多样性 Alpha diversity | 动物Animal | 2.419 ± 0.254a | 2.481 ± 0.207a | 2.460 ± 0.1626a | 2.446 ± 0.651a | 2.491 ± 0.11685a | 2.526 ± 0.239a |
植物Plant | 1.076 ± 0.491a | 1.223 ± 0.096a | 1.264 ± 0.092a | 1.143 ± 0.351a | 1.315 ± 0.210a | 1.262 ± 0.360a | |
人畜共患Zoonotic | 1.458 ± 0.292a | 1.467 ± 0.276a | 1.563 ± 0.293a | 1.604 ± 0.257a | 1.577 ± 0.167a | 1.566 ± 0.238a | |
群落构建过程 Community assembly | m (NCM) | 0.742 | 0.857 | 1.011 | 0.497 | 1.134 | 1.173 |
R2 (NCM) | 0.244 | 0.208 | 0.264 | 0.208 | 0.284 | 0.275 | |
群落不相似性 Community dissimilarity | βMNTD | 0.052 ± 0.009b | 0.056 ± 0.009b | 0.044 ± 0.005c | 0.076 ± 0.032a | 0.040 ± 0.004c | 0.037 ± 0.004c |
Bray-Curtis | 0.502 ± 0.103bc | 0.514 ± 0.108b | 0.455 ± 0.050c | 0.630 ± 0.148a | 0.334 ± 0.049e | 0.387 ± 0.062d | |
Jaccard | 0.600 ± 0.060b | 0.599 ± 0.041b | 0.530 ± 0.022c | 0.653 ± 0.118a | 0.492 ± 0.036d | 0.519 ± 0.031cd |
Table 3
Topological characteristics of co-occurrence networks and risk indices about soil pathogenic bacteria for typical land-use conversion patterns in the Xiong'an New Area"
土壤病原细菌风险评价指标 Indicators of soil pathogenic bacteria risk evaluation | AR_TG | AR_ACW | THM_ACW | TG_THC | THM_TF | TW_THM | 综合加权值 Comprehensive weight |
绝对丰度 Absolute abundance | 0.093 | ||||||
节点数 Node number | 134 | 141 | 172 | 73 | 206 | 210 | 0.114 |
边数 Edge number | 797 | 801 | 363 | 0.157 | |||
正相关关系占比 Proportion of positive correlation | 53.7% | 58.8% | 53.19% | 72.73% | 55.59% | 62.12% | / |
负相关关系占比 Proportion of negative correlation | 46.3% | 41.2% | 46.81% | 27.27% | 44.41% | 37.88% | / |
平均加权度 Average weighted degree | 10.516 | 10.015 | 11.336 | 8.807 | 12.478 | 13.661 | 0.050 |
直径 Diameter | 7 | 7 | 6 | 10 | 6 | 6 | 0.071 |
图密度 Graph density | 0.089 | 0.081 | 0.076 | 0.138 | 0.069 | 0.074 | 0.091 |
模块化 Modularity | 0.502 | 0.543 | 0.530 | 0.435 | 0.586 | 0.501 | 0.029 |
平均聚类系数 Average clustering coefficient | 0.505 | 0.495 | 0.503 | 0.578 | 0.488 | 0.487 | 0.022 |
平均路径长度 Average path length | 3.047 | 3.099 | 3.033 | 3.162 | 2.966 | 2.956 | 0.008 |
土壤暴露时间 Soil exposure time/(mg·d-1) | 130 | 80 | 100 | 150 | 200 | 220 | 0.129 |
人类土壤暴露百分比 Human soil exposure percentage (%) | 45 | 25 | 30 | 50 | 56 | 68.7 | 0.120 |
土壤摄食率 Soil ingestion rate/(mg·d-1) | 90 | 50 | 70 | 100 | 120 | 130 | 0.110 |
风险指数 Risk index | 0.388 | 0.274 | 0.286 | 0.751 | 0.401 | 0.433 | / |
白雪娟, 翟国庆, 刘敬泽. 13C稳定同位素在陆地生态系统植物-微生物-土壤碳循环中的应用. 林业科学, 2024, 60 (7): 175- 190. | |
Bai X J, Zhai G Q, Liu J Z. Application of 13C stable isotopes in plant-microbial-soil carbon cycle in terrestrial ecosystem. Scientia Silvae Sinicae, 2024, 60 (7): 175- 190. | |
丛 微, 于晶晶, 喻海茫, 等. 不同气候带森林土壤微生物多样性和群落构建特征. 林业科学, 2022, 58 (2): 70- 79. | |
Cong W, Yu J J, Yu H M, et al. Diversity and community assembly of forest soil microorganisms in different climatic zones. Scientia Silvae Sinicae, 2022, 58 (2): 70- 79. | |
戴柳云, 侯 磊, 王 化, 等. 2024. 土地利用对洱海罗时江小流域土壤微塑料污染的影响. 环境科学, 45(5): 3069−3077. | |
Dai L Y, Hou L, Wang H, et al. 2024. Effects of land use patterns on soil microplastic pollution in the Luoshijiang subwatershed of Erhai Lake basin. Environmental Science, 45(5): 3069-3077. [in Chinese]) | |
侯军华, 檀文炳, 余 红, 等. 土壤环境中微塑料的污染现状及其影响研究进展. 环境工程, 2020, 38 (2): 16- 27,15. | |
Hou J H, Tan W B, Yu H, et al. Microplastics in soil ecosystem: a review on sources, fate and ecological impact. Environmental Engineering, 2020, 38 (2): 16- 27,15. | |
郝永丽, 胡亚鲜, 白晓雄, 等. 黄土高原土地利用方式对微塑料丰度和形态分布的影响. 环境科学, 2022, 43 (9): 4748- 4755. | |
Hao Y L, Hu Y X, Bai X X, et al. Abundances and morphology patterns of microplastics under different land use types on the Loess Plateau. Environmental Science, 2022, 43 (9): 4748- 4755. | |
王 参. 2022. 雄安新区不同土地利用方式土壤微生物群落特征及其影响因子研究. 石家庄: 河北师范大学. | |
Wang C. 2022. Studies on soil microbial community characteristics and their influencing factors under different land-use patterns in the Xiong'an New Area. Shijiazhuang: Hebei Normal University. [in Chinese] | |
王 参, Abolfazl M, 杨 佳, 等. 短时间尺度雄安新区旱柳根际土壤细菌群落特征分析. 生态学报, 2023, 43 (2): 858- 867. | |
Wang C, Abolfazl M, Yang J, et al. Bacterial rhizospere characteristics of Salix matsudana under short time scale in the Xiong'an New Area, China. Acta Ecologica Sinica, 2023, 43 (2): 858- 867. | |
张万益, 贾德龙, 王 尧, 等. 地质调查: 雄安新区建设先“摸底”. 中国发展观察, 2017, (8): 22- 23. | |
Zhang W Y, Jia D L, Wang Y, et al. Geological survey: xiong'an new area construction should be “thoroughly explored”. China Development Observation, 2017, (8): 22- 23. | |
朱永官, 陈保冬, 付 伟. 土壤生态学研究前沿. 科技导报, 2022, 40 (3): 25- 31. | |
Zhu Y G, Chen B D, Fu W. Research frontiers in soil ecology. Science & Technology Review, 2022, 40 (3): 25- 31. | |
Banerjee S, van der Heijden M G A. Soil microbiomes and one health. Nature Reviews Microbiology, 2023, 21 (1): 6- 20.
doi: 10.1038/s41579-022-00779-w |
|
Carpenter E, Smith K L. 1972. Plastics on the Sargasso Sea surface. Science, 175(4027): 1240–1241. | |
Choi Y R, Kim Y N, Yoon J H, et al. Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju city in the Republic of Korea. Journal of Soils and Sediments, 2021, 21 (5): 1962- 1973.
doi: 10.1007/s11368-020-02759-0 |
|
Christel A, Dequiedt S, Chemidlin-Prevost-Bouré N, et al. Urban land uses shape soil microbial abundance and diversity. Science of the Total Environment, 2023, 883, 163455.
doi: 10.1016/j.scitotenv.2023.163455 |
|
Deng L Y, Xi H B, Wan C L, et al. 2023. Is the petrochemical industry an overlooked critical source of environmental microplastics? Journal of Hazardous Materials, 451: 131199. | |
He X K, Qian Y B, Li Z L, et al. Identification of factors influencing the microplastic distribution in agricultural soil on Hainan Island. Science of the Total Environment, 2023, 874, 162426.
doi: 10.1016/j.scitotenv.2023.162426 |
|
Hu J, Zhang L Q, Zhang W Y, et al. Significant influence of land use types and anthropogenic activities on the distribution of microplastics in soil: a case from a typical mining-agricultural city. Journal of Hazardous Materials, 2024, 477, 135253.
doi: 10.1016/j.jhazmat.2024.135253 |
|
Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood. Environment International, 2022, 163, 107199.
doi: 10.1016/j.envint.2022.107199 |
|
Li C C, Liu J, Rillig M C, et al. 2024a. What harmful microbes are lurking in the world’s 7 billion tonnes of plastic waste? Nature, 634(8032): 30-32. | |
Li M, Chen L D, Zhao F K, et al. An innovative risk evaluation method on soil pathogens in urban-rural ecosystem. Journal of Hazardous Materials, 2023, 459, 132286.
doi: 10.1016/j.jhazmat.2023.132286 |
|
Li Z P, Shangguan H Y, Yao H F, et al. Colonization ability and uniformity of resources and environmental factors determine biological homogenization of soil protists in human land-use systems. Global Change Biology, 2024b, 30 (7): e17411.
doi: 10.1111/gcb.17411 |
|
Liu Y H, Xiao M L, Shahbaz M, et al. Microplastics in soil can increase nutrient uptake by wheat. Journal of Hazardous Materials, 2022, 438, 129547.
doi: 10.1016/j.jhazmat.2022.129547 |
|
Masoudi A, Wang M, Zhang X L, et al. Meta-analysis and evaluation by insect-mediated baiting reveal different patterns of hypocrealean entomopathogenic fungi in the soils from two regions of China. Frontiers in Microbiology, 2020, 11, 1133.
doi: 10.3389/fmicb.2020.01133 |
|
Okeke E S, Okoye C O, Atakpa E O, et al. 2022. Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resources, Conservation and Recycling, 177: 105961. | |
Pepper I L. The soil health-human health nexus. Critical Reviews in Environmental Science and Technology, 2013, 43 (24): 2617- 2652.
doi: 10.1080/10643389.2012.694330 |
|
Rillig M C. 2012. Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46(12): 6453-6454. | |
Sarkar A, McInroy C J A, Harty S, et al. Microbial transmission in the social microbiome and host health and disease. Cell, 2024, 187 (1): 17- 43.
doi: 10.1016/j.cell.2023.12.014 |
|
Thompson R C, Olsen Y, Mitchell R P, et al. 2004. Lost at sea: where is all the plastic? Science, 304(5672): 838. | |
Wang C, Masoudi A, Wang M, et al. Stochastic processes drive the dynamic assembly of bacterial communities in Salix matsudana afforested soils. Frontiers in Microbiology, 2024a, 15, 1467813.
doi: 10.3389/fmicb.2024.1467813 |
|
Wang C, Masoudi A, Wang M, et al. Land-use types shape soil microbial compositions under rapid urbanization in the Xiong'an New Area, China. Science of the Total Environment, 2021, 777, 145976.
doi: 10.1016/j.scitotenv.2021.145976 |
|
Wang C, Masoudi A, Wang M, et al. Community structure and diversity of the microbiomes of two microhabitats at the root-soil interface: implications of meta-analysis of the root-zone soil and root endosphere microbial communities in Xiong'an New Area. Canadian Journal of Microbiology, 2020, 66 (11): 605- 622.
doi: 10.1139/cjm-2020-0061 |
|
Wang M, Masoudi A, Wang C, et al. Impacts of net cages on pollutant accumulation and its consequence on antibiotic resistance genes (ARGs) dissemination in freshwater ecosystems: insights for sustainable urban water management. Environment International, 2024b, 183, 108357.
doi: 10.1016/j.envint.2023.108357 |
|
Wang M, Masoudi A, Wang C, et al. Plantation type and afforestation age disclose variable influences on soil microbial compositions in man‐made forests in the Xiong'an New Area, China. Land Degradation & Development, 2022, 33, 3058- 3073. | |
Wang M, Wang C, Yu Z J, et al. 2023. Fungal diversities and community assembly processes show different biogeographical patterns in forest and grassland soil ecosystems. Frontiers in Microbiology, 14: 1036905. | |
Withana P A, Li J, Senadheera S S, et al. Machine learning prediction and interpretation of the impact of microplastics on soil properties. Environmental Pollution, 2024, 341, 122833.
doi: 10.1016/j.envpol.2023.122833 |
|
Wu C H, Wang M, Wang C, et al. Reed biochar improved the soil functioning and bacterial interactions: a bagging experiment using the plantation forest soil (Fraxinus chinensis) in the Xiong'an New Area, China. Journal of Cleaner Production, 2023, 410, 137316.
doi: 10.1016/j.jclepro.2023.137316 |
|
Yang X R, Jiang G F, Zhang Y Z, et al. MBPD: a multiple bacterial pathogen detection pipeline for one health practices. iMeta, 2023, 2 (1): e82.
doi: 10.1002/imt2.82 |
|
Zhai Y J, Bai J H, Chang P F, et al. Microplastics in terrestrial ecosystem: exploring the menace to the soil-plant-microbe interactions. TrAC Trends in Analytical Chemistry, 2024, 174, 117667.
doi: 10.1016/j.trac.2024.117667 |
|
Zhang F D, Yang X Y, Zhang Z M. Effects of soil properties and land use patterns on the distribution of microplastics: a case study in southwest China. Journal of Environmental Management, 2024, 356, 120598.
doi: 10.1016/j.jenvman.2024.120598 |
|
Zhang P, Wang J, Huang L, et al. Microplastic transport during desertification in drylands: abundance and characterization of soil microplastics in the amu darya-Aral sea basin, central Asia. Journal of Environmental Management, 2023, 348, 119353.
doi: 10.1016/j.jenvman.2023.119353 |
|
Zhang S Y, He Z Z, Wu C Y, et al. Complex bilateral interactions determine the fate of polystyrene micro- and nanoplastics and soil protists: implications from a soil Amoeba. Environmental Science & Technology, 2022, 56 (8): 4936- 4949. | |
Zhao M, Li Y F, Li C P, et al. Effects of polyurethane microplastics combined with cadmium on maize growth and cadmium accumulation under different long-term fertilisation histories. Journal of Hazardous Materials, 2024, 473, 134726.
doi: 10.1016/j.jhazmat.2024.134726 |
[1] | Junhui Wang,Changjun Ding,Wei Li,Keming Luo,Jun Wang,Weixi Zhang,Shihui Niu,Miaomiao Zhang,Xiyang Zhao,Liangjiao Xue,Hengfu Yin. Advances in Genetic Breeding Research of Chinese Forest Trees in 2024 [J]. Scientia Silvae Sinicae, 2025, 61(7): 35-51. |
[2] | Yuchuang Liu,Jiahui Liu,Jian Zhao,Dong Zhao,Hongye Zhang,Xiaokang Su,Yuke Feng,Yan Cheng,Ziyi Li. Research Progress of Theory and Equipment Related to Mechanized Harvesting of Lycium barbarum [J]. Scientia Silvae Sinicae, 2025, 61(5): 222-232. |
[3] | Lixia Chen,Yachang Cheng,Feng Lu,Xiupeng Yue,Guogang Zhang,Ge Sun. Analysis of Factors Influencing the Satellite Tracking Duration of Oriental Storks [J]. Scientia Silvae Sinicae, 2025, 61(5): 180-186. |
[4] | Han Bai,Minhui Hao,Huaijiang He,Xinna Zhang,Chunyu Zhang,Xiuhai Zhao. Response of Seedling Leaf Functional Traits to Simulated Nitrogen Deposition for the Major Tree Species of Northeast China [J]. Scientia Silvae Sinicae, 2025, 61(5): 23-32. |
[5] | Xu Wang,Hao Guo, Baoyinmanda,Guangyi Zhou,Yuehua Chen,Dangren Li. Damaged Characteristics and Influencing Factors of Cunninghamia lanceolata Mixed Plantations in Subtropics under Extreme Drought Conditions [J]. Scientia Silvae Sinicae, 2025, 61(5): 12-22. |
[6] | Mingjia Zhang,Boqiang Tong,Kai Qu,Yang Xian,Chengcheng Cui,Yongzheng Wang,Yicun Zang,Biao Han. Desiccation Sensitivity and Low-Temperature Preservation Techniques of Quercus acutissim Seeds and Embryonic Axes [J]. Scientia Silvae Sinicae, 2025, 61(4): 129-139. |
[7] | Xinxin Ma,You Wang,Jiajun Wang,Long Feng,Jianfeng Ma. Changes in Ash Composition of Bamboo during Pyrolysis and the Distribution Pattern of Silicon Transformation [J]. Scientia Silvae Sinicae, 2025, 61(2): 172-179. |
[8] | Ying Zhu,Xinyu Zhou,Yuqing Feng,Hui Wang,Xin Li. Resilience Evaluation of Wetland Ecological Network in Water Network City: a Case Study of Suzhou Central Urban Area [J]. Scientia Silvae Sinicae, 2025, 61(2): 62-73. |
[9] | Guipeng Cui,Hongzhong Dang,Wei Xiong,Feng Wang,Yonghua Li,Bin Yao,Mengchun Cui,Weiyuan Kong,Qi Lu. Thoughts on Restoration Strategies of Degraded Plantations in the Area of China’s Great Green Wall Project [J]. Scientia Silvae Sinicae, 2025, 61(1): 10-16. |
[10] | Qingbin Jiang,Jingxiang Meng,Baojun Li,Haijun Chen,Bijiang Fang,Lang Guo,Shenghui Tian. Genetic Evaluation and Selection of 8-Year-Old Semi-Sibling Family of Michelia macclurei [J]. Scientia Silvae Sinicae, 2025, 61(1): 104-114. |
[11] | Shuya Yang,Jingru Wang,Yingying Zhu,Lita Yi,Meihua Liu. Effects of Mixed Plantation of Cunninghamia lanceolata and Phoebe chekiangensis on Root Exudates and Community Structure of Arbuscular Mycorrhizal Fungi [J]. Scientia Silvae Sinicae, 2024, 60(9): 59-68. |
[12] | Lixia Chen,Feng Lu,Hongxing Jiang,Ge Sun,Xiupeng Yue,Yixuan Wang,Tong Gao,Xingbo Hu,Changqing Ding. Predicting the Distribution of Suitable Habitats for Oriental Storks Based on Satellite Tracking in Yellow River Delta [J]. Scientia Silvae Sinicae, 2024, 60(8): 46-56. |
[13] | Guangdao Bao,Ting Liu,Zhonghui Zhang,Zhibin Ren,Chang Zhai,Mingming Ding,Xuefei Jiang. Remote Sensing Inversion of Effective Leaf Area Index of Four Coniferous Forest Types and Their Spatial Distribution Rule in Changbai Mountain [J]. Scientia Silvae Sinicae, 2024, 60(5): 127-138. |
[14] | Xia Wang,Yinzhu Cao,Huafeng Wu,Daofeng Liu,Shunzhao Sui. Cloning and Functional Analysis of the Transcription Factor CpBBX24 Gene of Chimonanthus praecox [J]. Scientia Silvae Sinicae, 2024, 60(4): 127-135. |
[15] | Lü Ziqing, Duan Aiguo. Biomass and Carbon Storage Model of Cunninghamia lanceolata in Different Production Areas [J]. Scientia Silvae Sinicae, 2024, 60(2): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||