Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 81-94.doi: 10.11707/j.1001-7488.LYKX20240009
• Research papers • Previous Articles Next Articles
Received:
2024-01-05
Online:
2025-01-25
Published:
2025-02-09
Contact:
Qinghe Li
E-mail:tanfengsen@126.com;tsinghel@caf.ac.cn
CLC Number:
Fengsen Tan,Qinghe Li. Anatomical Structure and Functional Trade-Offs of the Xylem in Desert Shrubs in China: a Case Study with 18 Shrubs in Western Inner Mongolia[J]. Scientia Silvae Sinicae, 2025, 61(1): 81-94.
Table 1
Basic information of 18 desert shrubs in this study"
物种 Species | 科 Family | 物种代码 Code | 叶片习性 Leaf habit | 高度 Height/m | 花果期 Flowering and fruiting period(month) |
白刺Nitraria tangutorum | 蒺藜科Zygophyllaceae | Nt | 落叶Deciduous | 1~2 | 5—8 |
四合木Tetraena mongolica | 蒺藜科Zygophyllaceae | Tm | 落叶Deciduous | 0.4~0.9 | 5—9 |
霸王Zygophyllum xanthoxylum | 蒺藜科Zygophyllaceae | Zx | 落叶Deciduous | 0.5~1 | 4—8 |
黄花红砂Reaumuria trigyna | 柽柳科Tamaricaceae | Rt | 落叶Deciduous | 0.1~0.3 | 7—9 |
蒙古扁桃Prunus mongolica | 蔷薇科Rosaceae | Prm | 落叶Deciduous | 1~2 | 5—10 |
绵刺Potaninia mongolica | 蔷薇科Rosaceae | Pom | 落叶Deciduous | 0.3~0.4 | 6—10 |
锐枝木蓼Atraphaxis pungens | 廖科Polygonaceae | Ap | 落叶Deciduous | 0.8~1.5 | 5—8 |
沙冬青Ammopiptanthus mongolicus | 豆科Fabaceae | Am | 常绿Evergreen | 1.5~2 | 4—6 |
柠条锦鸡儿Caragana korshinskii | 豆科Fabaceae | Ck | 落叶Deciduous | 1~4 | 5—7 |
毛刺锦鸡儿Caragana tibetica | 豆科Fabaceae | Ct | 落叶Deciduous | 0.2~0.3 | 5—8 |
小叶锦鸡儿Caragana microphylla | 豆科Fabaceae | Cm | 落叶Deciduous | 1~3 | 5—8 |
狭叶锦鸡儿Caragana stenophylla | 豆科Fabaceae | Cs | 落叶Deciduous | 0.3~0.8 | 4—8 |
荒漠锦鸡儿Caragana roborovskyi | 豆科Fabaceae | Cr | 落叶Deciduous | 0.3~1 | 5—7 |
半日花Helianthemum songaricum | 半日花科Cistaceae | Hs | 落叶Deciduous | 0.10~0.12 | 5—9 |
驼绒藜Krascheninnikovia ceratoides | 藜科Chenopodiaceae | Kc | 落叶Deciduous | 0.1~1 | 6—9 |
黑沙蒿Artemisia ordosica | 菊科Asteraceae | Ao | 落叶Deciduous | 0.5~1 | 7—10 |
紫菀木Asterothamnus alyssoides | 菊科Asteraceae | Aal | 落叶Deciduous | 0.1~0.2 | 7—10 |
蓍状亚菊Ajania achilleoides | 菊科Asteraceae | Aac | 落叶Deciduous | 0.1~0.2 | 8—10 |
Table 1
Xylem traits of the 18 desert shrubs in this study (mean ± SD)"
物种 Species | RPf (%) | APf (%) | TPf (%) | Ff (%) | VLf (%) | VWf (%) | VWT (%) | Tf (%) | T/D | VD/(N·mm?2) | Dh/μm | Kth/(kg·s?1 MPa?1m?1) | WD/(g·cm?3) |
白刺Nitraria tangutorum | 5.95±1.45 | 5.22±1.15 | 11.18±1.45 | 70.69±2.36 | 14.12±5.95 | 3.76±1.85 | 5.37±0.23 | — | 0.21±0.14 | 290±121.39 | 30.52±4.65 | 8.17±1.18 | 0.93+0.07 |
四合木Tetraena mongolica | 7.27±2.51 | 4.84±1.5 | 12.11±3.53 | 77.98±5.86 | 6.6±1.87 | 3.31±0.81 | 6.6±0.15 | — | 0.29±0.03 | 162.5±30.95 | 25.32±5.05 | 2.03±1.10 | 0.93+0.05 |
霸王Zygophyllum xanthoxylum | 16.38±3.51 | 6.76±4.35 | 23.13±6.13 | 58.09±8.98 | 14±5.28 | 4.78±1.95 | 5.4±0.24 | — | 0.21±0.03 | 275.53±126.93 | 31.03±4.13 | 7.24±4.35 | 0.88+0.04 |
黄花红砂Reaumuria trigyna | 2.5±2.37 | 24.04±7.58 | 26.55±7.46 | 50.74±7.00 | 14.23±1.77 | 8.48±1.17 | 5.32±0.15 | — | 0.23±0.03 | 575.69±338.64 | 23.31±5.29 | 4.23±1.90 | 0.61+0.03 |
蒙古扁桃Prunus mongolica | 19.19±6.09 | 2.96±0.77 | 22.15±5.72 | 45.74±3.76 | 23.73±6.27 | 8.37±1.93 | 6.44±0.12 | — | 0.41±0.01 | 19.91±2.06 | 5.54±2.38 | 0.81+0.05 | |
绵刺Potaninia mongolica | 15.16±2.59 | 3.75±2.48 | 18.92±2.27 | 58.9±7.66 | 16.27±2.82 | 5.91±1.00 | 3.16±0.21 | — | 0.22±0.01 | 969.3±144.11 | 16±1.37 | 1.78±0.57 | 0.68+0.02 |
锐枝木蓼Atraphaxis pungens | 2.99±2 | 5.98±1.17 | 8.97±2.11 | 73.3±4.93 | 12.71±2.92 | 5.01±1.16 | 4.07±0.11 | — | 0.29±0.03 | 901.11±393.35 | 17.92±3.88 | 3.44±2.59 | 0.83+0.1 |
沙冬青Ammopiptanthus mongolicus | 29.14±4.35 | 1.85±1.29 | 31±5.50 | 24.23±11.39 | 10.98±1.75 | 4.72±0.77 | 3.93±0.16 | 29.07±3.35 | 0.35±0.03 | 768.99±190.85 | 16.1±2.26 | 1.42±0.54 | 0.8+0.03 |
柠条锦鸡儿Caragana korshinskii | 5.39±2.42 | 24.21±5.78 | 29.59±13.94 | 44.7±14.39 | 19±5.14 | 6.7±1.53 | 5.71±0.22 | — | 0.23±0.01 | 405.21±89.46 | 29.53±4.16 | 8.89±4.43 | 0.62+0.02 |
毛刺锦鸡儿Caragana tibetica | 10.9±3.55 | 9.97±1.3 | 20.87±7.23 | 41.48±7.76 | 24.55±5.81 | 13.1±4.55 | 4.56±0.16 | — | 0.3±0.04 | 18.53±3.67 | 4.7±2.58 | 0.57+0.03 | |
小叶锦鸡儿Caragana microphylla | 9.15±4.29 | 16.31±2.39 | 25.46±3.89 | 56.79±6.31 | 10.81±3.05 | 6.94±1.55 | 5.29±0.40 | — | 0.34±0.06 | 840.03±469.46 | 17.77±2.46 | 2.16±1.08 | 0.56+0.03 |
狭叶锦鸡儿Caragana stenophylla | 8.5±2.26 | 15.69±1.77 | 24.19±2.33 | 42.81±5.82 | 19.18±3.53 | 13.83±4.09 | 4.43±0.16 | — | 0.4±0.08 | 15.02±2.36 | 2.91±1.34 | 0.79+0.04 | |
荒漠锦鸡儿Caragana roborovskyi | 7.22±2.88 | 14.76±1.63 | 21.98±2.16 | 45.97±6.99 | 20.58±5.25 | 11.47±2.26 | 4.53±0.17 | — | 0.28±0.04 | 988.99±304.37 | 18.74±1.22 | 3.46±1.16 | 0.66+0.03 |
半日花Helianthemum songaricum | 22.57±3.71 | 7.11±2.53 | 29.68±2.75 | 50.78±6.22 | 11.97±3.34 | 7.57±2.33 | 3.7±0.20 | — | 0.33±0.02 | 11.94±0.76 | 0.67±0.16 | 0.75+0.05 | |
驼绒藜Krascheninnikovia ceratoides | — | 15.27±0.85 | 15.27±0.85 | 63.27±8.31 | 13.96±6.12 | 7.5±2.68 | 4.73±0.13 | — | 0.36±0.12 | 16.4±5.62 | 2.6±1.57 | 0.98+0.09 | |
黑沙蒿Artemisia ordosica | 4.31±2.84 | 11.92±1.11 | 16.23±6.32 | 58.91±2.69 | 16.51±1.43 | 8.35±1.18 | 4.24±0.17 | — | 0.22±0.03 | 614.73±136.08 | 21.29±2.14 | 3.31±0.80 | 0.8+0.03 |
紫菀木Asterothamnus alyssoides | 6.68±2.87 | 9.06±5.19 | 15.74±5.31 | 62.04±4.81 | 15.09±1.89 | 7.13±2.25 | 4.7±0.16 | — | 0.34±0.05 | 16.65±2.56 | 2.19±0.65 | 0.77+0.05 | |
耆状亚菊Ajania achilleoides | — | 21.72±3.56 | 21.72±8.28 | 60.79±4.49 | 11.76±3.61 | 5.74±1.54 | 4.42±0.11 | — | 0.31±0.03 | 795.54±356.4 | 16.23±1.94 | 1.37±0.36 | 0.93+0.03 |
种间变异系数Interspecific variation coefficient(%) | 81.26 | 63.65 | 31.63 | 24.08 | 30.57 | 40.31 | 19.07 | — | 22.1 | 56.95 | 28.21 | 64.48 | 16.46 |
白雨鑫, 刘玉龙, 王晓春, 等. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异. 植物生态学报, 2023, 47 (8): 1144- 1158.
doi: 10.17521/cjpe.2022.0300 |
|
Bai Y X, Liu Y L, Wang X C, et al. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate. Chinese Journal of Plant Ecology, 2023, 47 (8): 1144- 1158.
doi: 10.17521/cjpe.2022.0300 |
|
曹宛虹, 张新英. 锦鸡儿属6种沙生植物次生木质部解剖. 植物学报, 1991, 33 (3): 181- 187,253−254. | |
Cao W H, Zhang X Y. The secondary xylem anatomy of 6 desert plants of Caragana. Journal of Integrative Plant Biology, 1991, 33 (3): 181- 187,253−254. | |
陈 婕, 徐 庆, 高德强, 等. 西鄂尔多斯半日花及霸王的水分利用. 林业科学, 2016, 52 (2): 47- 56. | |
Chen J, Xu Q, Gao D Q, et al. Water use of helianthemum songaricum and co-occurring plant species Sarcozygium xanthoxylum in western Ordos. Scientia Silvae Sinicae, 2016, 52 (2): 47- 56. | |
龚 容, 徐 霞, 江红蕾, 等. 干旱半干旱区几种典型灌木半灌木茎叶水分传导系统的结构特征. 北京师范大学学报(自然科学版), 2018, 54 (4): 534- 542. | |
Gong R, Xu X, Jiang H L, et al. Architectural traits of stem-leaf hydraulic system in typical shrubs in arid and semi-arid regions. Journal of Beijing Normal University (Natural Science), 2018, 54 (4): 534- 542. | |
胡 云, 燕 玲, 李 红. 14种荒漠植物茎的解剖结构特征分析. 干旱区资源与环境, 2006, 20 (1): 202- 208. | |
Hu Y, Yan L, Li H. Studies on the anatomical characteristics of the stems of 14 desert plants. Journal of Arid Land Resources and Environment, 2006, 20 (1): 202- 208. | |
金芳玉. 2014. 绵刺的营养器官解剖结构与抗旱适应性的关系. 呼和浩特: 内蒙古农业大学. | |
Jin F Y. 2014. Relationship between the Potaninia monglica anatomical structure of the vegetative organ and its draught adapability. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
李艺蝉. 2021. 红树植物木质部结构特征及其对环境因子的响应. 南宁: 广西大学. | |
Li Y C. 2021. Xylem anatomical structure and respencese to environment of mangrove. Nanning: Guangxi University. [in Chinese] | |
马成仓, 高玉葆, 李清芳等. 内蒙古高原荒漠区几种锦鸡儿属(Caragana)优势植物的生理生态适应特性. 生态学报, 2007, 27 (11): 4643- 4650.
doi: 10.3321/j.issn:1000-0933.2007.11.032 |
|
Ma C H, Gao Y B, Li Q F, et al. A comparison of ecophysiological characteristic of four dominabt Caragana species in adaptatin to desert habitat of the Inner Mongolia Plateau. Acta Ecologica Sinica, 2007, 27 (11): 4643- 4650.
doi: 10.3321/j.issn:1000-0933.2007.11.032 |
|
倪鸣源, Aina A A N, 王永强, 等. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析. 植物生态学报, 2021, 45 (4): 394- 403.
doi: 10.17521/cjpe.2020.0367 |
|
Ni M Y, Aina A A N, Wang Y Q. et al. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical Karst region. Chinese Journal of Plant Ecology, 2021, 45 (4): 394- 403.
doi: 10.17521/cjpe.2020.0367 |
|
王 琼. 2009. 东阿拉善、西鄂尔多斯地区主要荒漠植物水分生态适应性研究. 呼和浩特: 内蒙古大学. | |
Wang Q. 2009. Study on water ecological adaptability of dominabt desert plants on the eastern Alashan western Erdos area. Hohhot: Inner Mongolia University.[in Chinese] | |
张启伟. 2021. 北热带喀斯特山地不同坡位木本植物的水力结构与功能. 南宁: 广西大学. | |
Zhang Q W. 2021. Hydraulic structure and function in woody plants across different slope positions from a tropical Karst forest. Nanning: Guangxi University. [in Chinese] | |
Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 2017, 1, 1285- 1291. | |
Anderegg W R L, Klein T, Bartlett M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (18): 5024- 5029. | |
Arend M, Fromm J. Seasonal change in the drought response of wood cell development in poplar. Tree Physiology, 2007, 27 (7): 985- 992.
doi: 10.1093/treephys/27.7.985 |
|
Aritsara A N A, Ni M Y, Wang Y Q, et al. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical Karst forest. Tree Physiology, 2023, 43 (8): 1307- 1318.
doi: 10.1093/treephys/tpad050 |
|
Aritsara A N A, Razakandraibe V M, Ramananantoandro T, et al. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. New Phytologist, 2021, 229 (3): 1467- 1480.
doi: 10.1111/nph.16969 |
|
Bai Y X, Zhang Y Q, Michalet R, et al. Responses of different herb life-history groups to a dominant shrub species along a dune stabilization gradient. Basic and Applied Ecology, 2019, 38, 1- 12.
doi: 10.1016/j.baae.2019.06.001 |
|
Barbaroux C, Bréda N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology, 2002, 22 (17): 1201- 1210.
doi: 10.1093/treephys/22.17.1201 |
|
Begum S, Kudo K, Rahman M H, et al. Climate change and the regulation of wood formation in trees by temperature. Trees, 2018, 32 (1): 3- 15.
doi: 10.1007/s00468-017-1587-6 |
|
Bryukhanova M, Fonti P. Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees, 2013, 27 (3): 485- 496.
doi: 10.1007/s00468-012-0802-8 |
|
Bucci S J, Scholz F G, Peschiutta M L, et al. 2013. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots. Plant, Cell & Environment, 36(12): 2163−2174. | |
Carlquist S. 2001. Comparative wood anatomy. Berlin: HeidelbergSpringer Berlin Heidelberg. | |
Castro-Díez P, Puyravaud J P, Cornelissen J H C, et al. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia, 1998, 116 (1): 57- 66. | |
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12 (4): 351- 366.
doi: 10.1111/j.1461-0248.2009.01285.x |
|
Creese C, Benscoter A M, Maherali H. Xylem function and climate adaptation in Pinus. American Journal of Botany, 2011, 98 (9): 1437- 1445.
doi: 10.3732/ajb.1100123 |
|
Ekwealor K U, Echereme C B, Ofobeze T N, et al. 2020. Adaptive strategies of desert plants in coping with the harsh conditions of desert environments: a review. International Journal of Plant & Soil Science, 1−8. | |
Ewers F W, Ewers J M, Jacobsen A L, et al. Vessel redundancy: modeling safety in numbers. IAWA Journal, 2007, 28 (4): 373- 388.
doi: 10.1163/22941932-90001650 |
|
Ehleringer J R, Mooney H A. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia, 1978, 37 (2): 183- 200.
doi: 10.1007/BF00344990 |
|
Feng X Y, Zhong L F, Zhou H, et al. The limiting effect of genome size on xylem vessel diameter is shifted by environmental pressures in seed plants. Plant Direct, 2022, 6 (12): e471.
doi: 10.1002/pld3.471 |
|
Fontes C G, Pinto-Ledezma J, Jacobsen A L, et al. Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Functional Ecology, 2022, 36 (2): 326- 340.
doi: 10.1111/1365-2435.13964 |
|
Fonti P, von Arx G, García-González I, et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 2010, 185 (1): 42- 53.
doi: 10.1111/j.1469-8137.2009.03030.x |
|
Fortunel C, Ruelle J, Beauchêne J, et al. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytologist, 2014, 202 (1): 79- 94.
doi: 10.1111/nph.12632 |
|
Ganthaler A, Mayr S. Dwarf shrub hydraulics: two Vaccinium species (Vaccinium myrtillus, Vaccinium vitis-idaea) of the European Alps compared. Physiologia Plantarum, 2015, 155 (4): 424- 434.
doi: 10.1111/ppl.12333 |
|
Gebauer R L E, Schwinning S, Ehleringer J R. Interspecific competition and resource pulse utilization in a cold desert community. Ecology, 2002, 83 (9): 2602.
doi: 10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2 |
|
Gibbens R P, Lenz J M. Root systems of some Chihuahuan Desert plants. Journal of Arid Environments, 2001, 49 (2): 221- 263.
doi: 10.1006/jare.2000.0784 |
|
Gómez-Aparicio L. The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. Journal of Ecology, 2009, 97 (6): 1202- 1214.
doi: 10.1111/j.1365-2745.2009.01573.x |
|
Gui Z Y, Li L C, Qin S G, et al. Foliar water uptake of four shrub species in a semi-arid desert. Journal of Arid Environments, 2021, 195, 104629.
doi: 10.1016/j.jaridenv.2021.104629 |
|
Hacke U G, Sperry J S, Pockman W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001, 126 (4): 457- 461.
doi: 10.1007/s004420100628 |
|
Hacke U G, Sperry J S, Wheeler J K, et al. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 2006, 26 (6): 689- 701.
doi: 10.1093/treephys/26.6.689 |
|
Hartill G E, Blackman C J, Halliwell B, et al. Cold temperature and aridity shape the evolution of drought tolerance traits in Tasmanian species of Eucalyptus. Tree Physiology, 2023, 43 (9): 1493- 1500.
doi: 10.1093/treephys/tpad065 |
|
Janssen T A J, Hölttä T, Fleischer K, et al. 2020. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell & Environment, 43(4): 965−980. | |
Jin Y, Qian H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 2019, 42 (8): 1353- 1359.
doi: 10.1111/ecog.04434 |
|
Kattge J, Bönisch G, Díaz S S, et al. RY plant trait database - enhanced coverage and open access. Glob Change Biology, 2020, 26 (1): 119- 188.
doi: 10.1111/gcb.14904 |
|
Liu H, Gleason S M, Hao G Y, et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 2019, 5 (2): eaav1332.
doi: 10.1126/sciadv.aav1332 |
|
Liu H, Ye Q, Gleason S M, et al. Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. New Phytologist, 2021, 229 (3): 1440- 1452.
doi: 10.1111/nph.16940 |
|
McCormack M L, Kaproth M A, Cavender-Bares J, et al. Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytologist, 2020, 228 (6): 1824- 1834.
doi: 10.1111/nph.16804 |
|
Morris H, Gillingham M A F, Plavcová L, et al. 2018. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell & Environment, 41(1): 245-260. | |
Mrad A, Domec J C, Huang C W, et al. 2018. A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. Plant, Cell & Environment, 41(12): 2718-2730. | |
Murakami Y, Miki N H, Yang L, et al. Water transport properties of seven woody species from the semi-arid Mu Us Sandy Land, China. Landscape and Ecological Engineering, 2016, 12 (2): 209- 220.
doi: 10.1007/s11355-015-0290-2 |
|
Nola P, Bracco F, Assini S, et al. Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. Annals of Forest Science, 2020, 77 (1): 8.
doi: 10.1007/s13595-019-0906-z |
|
Noy-Meir I. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 1973, 4, 25- 51.
doi: 10.1146/annurev.es.04.110173.000325 |
|
Ogasa M, Miki N H, Murakami Y, et al. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiology, 2013, 33 (4): 335- 344.
doi: 10.1093/treephys/tpt010 |
|
Pace M R, Angyalossy V. Wood anatomy and evolution: a case study in the Bignoniaceae. International Journal of Plant Sciences, 2013, 174 (7): 1014- 1048.
doi: 10.1086/670258 |
|
Palacio S, Paterson E, Sim A, et al. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy. Tree Physiology, 2011, 31 (2): 150- 159.
doi: 10.1093/treephys/tpq110 |
|
Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics, 2004, 20 (2): 289- 290.
doi: 10.1093/bioinformatics/btg412 |
|
Pérez-de-Lis G, Rossi S, Vázquez-Ruiz R A, et al. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist, 2016, 209 (2): 521- 530.
doi: 10.1111/nph.13610 |
|
Pittermann J. The evolution of water transport in plants: an integrated approach. Geobiology, 2010, 8 (2): 112- 139.
doi: 10.1111/j.1472-4669.2010.00232.x |
|
Pivovaroff A L, Sack L, Santiago L S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 2014, 203 (3): 842- 850.
doi: 10.1111/nph.12850 |
|
Pratt R B, Jacobsen A L. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant. Cell & Environment, 2017, 40 (6): 897- 913. | |
Puchi P F, Castagneri D, Rossi S, et al. Wood anatomical traits in black spruce reveal latent water constraints on the boreal forest. Global Change Biology, 2020, 26 (3): 1767- 1777.
doi: 10.1111/gcb.14906 |
|
Rana R, Langenfeld-Heyser R, Finkeldey R, et al. Functional anatomy of five endangered tropical timber wood species of the family Dipterocarpaceae. Trees, 2009, 23 (3): 521- 529.
doi: 10.1007/s00468-008-0298-4 |
|
Reich P B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102 (2): 275- 301.
doi: 10.1111/1365-2745.12211 |
|
Scholz F G, Bucci S J, Arias N, et al. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures. Oecologia, 2012, 170 (4): 885- 897.
doi: 10.1007/s00442-012-2368-y |
|
Sperry J. Evolution of water transport and xylem structure. International Journal of Plant Sciences, 2003, 164 (S3): S115- S127. | |
Sperry J S, Hacke U G, Feild T S, et al. Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences, 2007, 168 (8): 1127- 1139.
doi: 10.1086/520726 |
|
Stojnić S, Suchocka M, Benito-Garzón M, et al. Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiology, 2018, 38 (2): 173- 185.
doi: 10.1093/treephys/tpx128 |
|
Sun J, Wang N A, Niu Z M. Effect of soil environment on species diversity of desert plant communities. Plants, 2023, 12 (19): 3465.
doi: 10.3390/plants12193465 |
|
Tomasella M, Petrussa E, Petruzzellis F, et al. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 2019, 21 (1): 144.
doi: 10.3390/ijms21010144 |
|
Torres-Ruiz J M, Cochard H, Fonseca E, et al. Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region. Tree Physiology, 2017, 37 (6): 755- 766.
doi: 10.1093/treephys/tpx013 |
|
Tumajer J, Treml V. Response of floodplain pedunculate oak (Quercus robur L. ) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management, 2016, 379, 185- 194.
doi: 10.1016/j.foreco.2016.08.013 |
|
Tyree M T, Zimmermann M H. 2002. Xylem structure and the ascent of sap. Berlin: Heidelberg Springer. | |
Tyree M T, Ewers F W. The hydraulic architecture of trees and other woody plants. New Phytologist, 1991, 119 (3): 345- 360.
doi: 10.1111/j.1469-8137.1991.tb00035.x |
|
Waseem M, Nie Z F, Yao G Q, et al. Dew absorption by leaf trichomes in Caragana korshinskii: an alternative water acquisition strategy for withstanding drought in arid environments. Physiologia Plantarum, 2021, 172 (2): 528- 539.
doi: 10.1111/ppl.13334 |
|
Weithmann G, Paligi S S, Schuldt B, et al. Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. Tree Physiology, 2022, 42 (11): 2224- 2238. | |
Weltzin J F, Loik M E, Schwinning S, et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 2003, 53 (10): 941- 952.
doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2 |
|
Wheeler J K, Sperry J S, Hacke U G, et al. 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28(6): 800-812. | |
Whitford W G. Ecology of desert systems. Journal of Mammalogy, 2002, 84 (3): 1122- 1124. | |
Yang X D, Anwar E, Zhou J, et al. Higher association and integration among functional traits in small tree than shrub in resisting drought stress in an arid desert. Environmental and Experimental Botany, 2022, 201, 104993.
doi: 10.1016/j.envexpbot.2022.104993 |
|
Yu T, Liu P J, Zhang Q, et al. Detecting forest degradation in the three-north forest shelterbelt in China from multi-scale satellite images. Remote Sensing, 2021, 13 (6): 1131.
doi: 10.3390/rs13061131 |
|
Zanne A E, Westoby M, Falster D S, et al. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 2010, 97 (2): 207- 215.
doi: 10.3732/ajb.0900178 |
|
Zanne A E, Tank D C, Cornwell W K, et al. Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89- 92.
doi: 10.1038/nature12872 |
|
Zhang G Q, Mao Z, Maillard P, et al. Functional trade-offs are driven by coordinated changes among cell types in the wood of angiosperm trees from different climates. New Phytologist, 2023, 240 (3): 1162- 1176.
doi: 10.1111/nph.19132 |
|
Zhang S B, Cao K F, Fan Z X, et al. Potential hydraulic efficiency in angiosperm trees increases with growth-site temperature but has no trade-off with mechanical strength. Global Ecology and Biogeography, 2013, 22 (8): 971- 981.
doi: 10.1111/geb.12056 |
|
Zheng J M, Martínez-Cabrera H I. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 2013, 112 (5): 927- 935.
doi: 10.1093/aob/mct153 |
|
Zheng J M, Zhao X, Morris H, et al. Phylogeny best explains latitudinal patterns of xylem tissue fractions for woody angiosperm species across China. Frontiers in Plant Science, 2019, 10, 556.
doi: 10.3389/fpls.2019.00556 |
[1] | Ma Bolong, Zhang Junyao, Lü Qingzi, Li Zeyi, Chen Yixuan, Guo Jiaxuan, Cai Jing. Frost Fatigue and Its Relationships with Freeze-Thaw-Induced Embolism and Xylem Anatomical Structure in Six Temperate Trees [J]. Scientia Silvae Sinicae, 2025, 61(1): 95-103. |
[2] | Yiyuan Zhang,Yuan Chen,Gaiyun Li,Yiqiang Wu. Modification of Wood Fiber Surface by Aldehyde Groups and Property Evaluation of Self-Bonding Fiberboards [J]. Scientia Silvae Sinicae, 2024, 60(8): 174-183. |
[3] | Yujie Hang,Zhicheng Chen,Lin Wang,Baoliang Niu,Songsong Liu,Bo Yu,Xiao Wang,Shirong Liu. Anatomical Determinants of Wood Density of Eight Broad-Leaved Tree Species in Baotianman and Their Coordination and Trade-off with Leaf Traits [J]. Scientia Silvae Sinicae, 2024, 60(4): 62-70. |
[4] | Caimei Liu,Xizhi Wu,Yuyang Wu,Xianjun Li. Sanding Force and Surface Roughness of Air-Drum Belt Sanding Finished MDF [J]. Scientia Silvae Sinicae, 2024, 60(3): 131-140. |
[5] | Weisheng Zeng,Ying Pu,Xueyun Yang,Shanjun Yi. Growth Models and Its Climate-Driven Analysis of Carbon Storage in Tree Layers of Five Major Plantation Types in China [J]. Scientia Silvae Sinicae, 2023, 59(3): 21-30. |
[6] | Lifang Zhang,Shanqing Liang,Peng Jiang,Longfei Zhang. Synergistic Mechanism Analysis of MgAl-LDHs/MP Compound Flame Retardant in Medium Density Fiberboard [J]. Scientia Silvae Sinicae, 2022, 58(5): 140-150. |
[7] | Sha Zhou,Huanfei Ma,Jieying Wang,Chengjie Ren,Yaoxin Guo,Jun Wang,Fazhu Zhao. Latitudinal Distribution of Forest Soil Microbial Biomass Carbon and Its Affecting Factors in China [J]. Scientia Silvae Sinicae, 2022, 58(2): 49-57. |
[8] | Wenting Li,Mingpeng Li,Haitao Cheng,Jihe Chen,Ge Wang. Development of Environmentally Friendly and Efficient Bamboo Fiber Processing [J]. Scientia Silvae Sinicae, 2022, 58(11): 160-173. |
[9] | Cuicui Wang,Mingpeng Li,Ge Wang,Shaohua Gu,Haitao Cheng. Application Progress of Plant Fiber/Thermoplastic Polymer Prepreg in Automotive Lightweight Field [J]. Scientia Silvae Sinicae, 2021, 57(9): 168-180. |
[10] | Hanwen Zhu,Guanben Du,Zhong Yang,Bin Lü,Shenggao Lu. Determination of Resin Content of Eucalyptus Wood Fiber by Near Infrared Spectroscopy [J]. Scientia Silvae Sinicae, 2021, 57(8): 141-146. |
[11] | Chao Liu,Lizhou Tang,Lihong Han. Characterization of the Chloroplast Genome of Lindera setchuenensis and Phylogenetics of the Genus Lindera [J]. Scientia Silvae Sinicae, 2021, 57(12): 167-174. |
[12] | Wenwen Zhang,Juan Yu,Lijun Zhang,Yimin Fan. Preparation and Properties of Cellulose Nanofibers/Filter Paper Pulp Composite Microfiltration Membranes [J]. Scientia Silvae Sinicae, 2020, 56(9): 112-118. |
[13] | Han Zhao,Jin Huang,Youjing Zhang,Yanjun Lu,Zaimin Jiang,Jing Cai. Influence of Open Vessel Proportion on the Types of Embolism Vulnerability Curves [J]. Scientia Silvae Sinicae, 2020, 56(5): 50-59. |
[14] | Meiling Chen,Rong Liu,Ge Wang,Changhua Fang,Xinxin Ma,Shuqin Zhang,Benhua Fei. Parenchyma Cell Morphological Changes of Bamboo under Bending [J]. Scientia Silvae Sinicae, 2020, 56(2): 142-147. |
[15] | Meng Fandan, Wang Chao, Xiang Qin, Yu Yanglun, Yu Wenji. Effect of Hot Dry Air Treated Defibering Bamboo Veneer on the Properties of Bamboo-Based Fiber Composites [J]. Scientia Silvae Sinicae, 2019, 55(9): 142-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||