Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (12): 136-145.doi: 10.11707/j.1001-7488.LYKX20230357
Previous Articles Next Articles
Xi Pan,Kang Li,Zhong Yang*
Received:
2023-08-13
Online:
2024-12-25
Published:
2025-01-02
Contact:
Zhong Yang
CLC Number:
Xi Pan,Kang Li,Zhong Yang. Wood Species Identification through Fusion of NIR Spectroscopy and Digital Image Features Information Using Convolutional Neural Networks[J]. Scientia Silvae Sinicae, 2024, 60(12): 136-145.
Table 1
The wood species information of the specimen used in the experiment"
标签 Label | 属 Genus | 木材树种 Wood species |
0 | 琼楠属 Beilschmiedia | 李榄琼楠 B. linocieroides |
1 | 滇琼楠 B. yunnanensis | |
2 | 樟属 Cinnamomum | 云南樟 C. glanduliferum |
3 | 长柄樟 C. longipetiolatum | |
4 | 黄樟 C. porrectum | |
5 | 细毛樟 C. tenuipilum | |
6 | 润楠属 Machilus | 绿叶润楠 M. viridis |
7 | 滇润楠 M. yunnanensis | |
8 | 楠属 Phoebe | 披针叶楠 P. lanceolata |
9 | 普文楠 P. puwenensis |
Table 2
The feasibility comparison of 10 wood species identification using raw near infrared spectroscopy recurrence plot %"
模型 Model | 数据类型 Data type | 准确率 Accuracy | 精度 Precision | 召回率 Recall |
NIR-B-CNN | NIR-RP | 95.54 | 95.82 | 95.51 |
NIR-B-CNN-1D | 1D-NIR | 89.46 | 87.52 | 87.83 |
CNN-1D ( | 81.54 | 82.56 | 81.52 | |
PLS-DA | 93.13 | 93.29 | 93.05 | |
SVM | 93.75 | 94.09 | 93.75 | |
RF | 83.54 | 85.47 | 83.54 |
Table 3
The effect of near infrared spectroscopy pre-processing on 10 wood species identification based on recurrence plot %"
预处理 Pre-processing | NIR-B-CNN-1D | NIR-B-CNN | |||||
准确率 Accuracy | 精度 Precision | 召回率 Recall | 准确率 Accuracy | 精度 Precision | 召回率 Recall | ||
原始近红外光谱 Raw near infrared spectroscopy | 89.46 | 87.52 | 87.83 | 95.54 | 95.82 | 95.51 | |
去趋势Detrend | 93.88 | 94.13 | 93.87 | 96.00 | 96.12 | 95.99 | |
一阶导数First derivative (1st-D) | 95.13 | 94.82 | 95.15 | 96.58 | 96.75 | 96.58 | |
均值中心化Mean center (MC) | 92.21 | 92.95 | 92.07 | 94.50 | 95.08 | 94.43 | |
标准变量变换 Standard normal variate (SNV) | 90.38 | 91.05 | 90.37 | 95.88 | 96.12 | 95.86 | |
多元散射校正 Multiplicative scatter correction (MSC) | 91.08 | 91.77 | 91.13 | 95.33 | 95.66 | 95.28 |
Table 4
The performance of different convolutional neural network models in identify 10 wood species using image data %"
模型 Model | 图像尺寸 Image size | 准确率 Accuracy | 精度 Precision | 召回率 Recall |
Image-B-CNN | 125 pix×125 pix | 95.67 | 96.09 | 95.69 |
VGG19 | 93.79 | 94.02 | 93.73 | |
ResNe-t50 | 96.42 | 96.66 | 96.32 | |
Inception V3 | 95.04 | 95.34 | 94.91 | |
Xception | 95.96 | 96.18 | 95.89 | |
Image-B-CNN | 250 pix×250 pix | 96.75 | 96.87 | 96.75 |
VGG19 | 95.04 | 95.29 | 94.95 | |
ResNet-50 | 96.54 | 96.84 | 96.50 | |
Inception V3 | 96.50 | 96.70 | 96.46 | |
Xception | 96.46 | 96.71 | 96.42 |
Table 5
The performance of the TB-CNN in identifying 10 wood species using raw near infrared spectroscopy recurrence plot and image %"
模型 Model | 输入数据(尺寸) Input date (size) | 准确率 Accuracy | 精度 Precision | 召回率 Recall |
NIR-B-CNN | NIR RP | 95.54 | 95.82 | 95.51 |
Image-B-CNN | Image (125 pix×125 pix) | 95.67 | 96.09 | 95.69 |
Image (250 pix×250 pix) | 96.75 | 96.87 | 96.75 | |
TB-CNN | NIR RP + Image (125 pix×125 pix) | 99.92 | 99.92 | 99.92 |
NIR RP + Image (250 pix×250 pix) | 99.96 | 99.96 | 99.96 |
Table 6
The effect of near infrared spectroscopy pre-processing on 10 wood species identification based on TB-CNN model %"
预处理 Pre-processing | TB-CNN | ||||||
NIR RP + Image (125 pix×125 pix) | NIR RP + Image (250 pix×250 pix) | ||||||
准确率 Accuracy | 精度 Precision | 召回率 Recall | 准确率 Accuracy | 精度 Precision | 召回率 Recall | ||
原始近红外光谱 Raw near infrared spectroscopy | 99.92 | 99.92 | 99.92 | 99.96 | 99.96 | 99.96 | |
去趋势Detrend | 99.96 | 99.96 | 99.93 | 100.00 | 100.00 | 100.00 | |
一阶导数First derivative (1st-D) | 99.79 | 99.80 | 99.76 | 100.00 | 100.00 | 100.00 | |
均值中心化Mean center (MC) | 99.54 | 99.56 | 99.54 | 99.63 | 99.64 | 99.63 | |
标准变量变换 Standard normal variate (SNV) | 99.88 | 99.88 | 99.87 | 99.92 | 99.92 | 99.92 | |
多元散射校正 Multiplicative scatter correction (MSC) | 99.88 | 99.88 | 99.88 | 100.00 | 100.00 | 100.00 |
戴天虹, 翟 冰. 基于改进EfficientNet的木材识别研究. 森林工程, 2023, 39 (4): 93- 100. | |
Dai T H, Zhai B. Wood recognition research based on improved EfficientNet. Forest Engineering, 2023, 39 (4): 93- 100. | |
付立岩, 冯国红, 刘旭铭. 基于多元经验模态分解的可见/近红外光谱识别木材研究. 森林工程, 2023, 39 (4): 101- 109. | |
Fu L Y, Feng G H, Liu X M. Wood recognition by visible/near infrared spectroscopy based on multivariate empirical mode decomposition. Forest Engineering, 2023, 39 (4): 101- 109. | |
高振忠, 孙 瑾, 吴 鸿, 等. 樟科10属14种木材解剖学特征的比较研究. 林业科学研究, 2009, 22 (3): 413- 417.
doi: 10.3321/j.issn:1001-1498.2009.03.018 |
|
Gao Z Z, Sun J, Wu H, et al. Comparative study on wood anatomical structure of 14 species belonging to 10 genera of Lauraceae. Forest Research, 2009, 22 (3): 413- 417.
doi: 10.3321/j.issn:1001-1498.2009.03.018 |
|
何 拓, 刘守佳, 陆 杨, 等. 木材树种计算机视觉识别技术发展与应用. 林业工程学报, 2021a, 6 (3): 18- 27. | |
He T, Liu S J, Lu Y, et al. Advances and prospects of wood identification technology coupled with computer vision. Journal of Forestry Engineering, 2021a, 6 (3): 18- 27. | |
何 拓, 刘守佳, 陆 杨, 等. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统. 林业科学, 2021b, 57 (9): 152- 159. | |
He T, Liu S J, Lu Y, et al. iWood: an automated wood identification system for endangered and precious tree species using convolutional neural networks. Scientia Silvae Sinicae, 2021b, 57 (9): 152- 159. | |
刘守佳, 汪嘉君, 陆 杨, 等. 机器学习方法在木材树种识别领域的应用. 世界林业研究, 2023, 36 (5): 70- 75. | |
Liu S J, Wang J J, Lu Y, et al. Application of machine learning approaches to wood species identification. World Forestry Research, 2023, 36 (5): 70- 75. | |
宿恒硕, 吕 军, 丁志平, 等. 基于改进残差神经网络的木材识别算法. 林业科学, 2021, 57 (12): 147- 154. | |
Su H S, Lü J, Ding Z P, et al. Wood identification algorithm based on improved residual neural network. Scientia Silvae Sinicae, 2021, 57 (12): 147- 154. | |
孙 瑾, 王晓静, 王 飞, 等. 滇西南地区樟科17种木材解剖特征研究. 华南农业大学学报, 2014, 35 (5): 102- 107.
doi: 10.7671/j.issn.1001-411X.2014.05.018 |
|
Sun J, Wang X J, Wang F, et al. Wood anatomical characteristics of 17 Lauraceae species from southwest of Yunnan. Journal of South China Agricultural University, 2014, 35 (5): 102- 107.
doi: 10.7671/j.issn.1001-411X.2014.05.018 |
|
王登举. 全球林产品贸易现状与特点. 国际木业, 2019, 49 (3): 49- 53.
doi: 10.3969/j.issn.1671-4911.2019.03.020 |
|
Wang D J. Status quo and characteristics of global trade of forest products. International Wood Industry, 2019, 49 (3): 49- 53.
doi: 10.3969/j.issn.1671-4911.2019.03.020 |
|
赵子宇, 杨霄霞, 郭 慧, 等. 基于卷积神经网络模型的木材宏、微观辨识方法. 林业科学, 2021, 57 (6): 134- 143.
doi: 10.11707/j.1001-7488.20210615 |
|
Zhao Z Y, Yang X X, Guo H, et al. Recognition method of wood macro-and micro-structure based on convolution neural network. Scientia Silvae Sinicae, 2021, 57 (6): 134- 143.
doi: 10.11707/j.1001-7488.20210615 |
|
Bai R X, Meng Z, Xu Q S, et al. Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions. Reliability Engineering & System Safety, 2023, 232, 109076. | |
Barmpoutis P, Dimitropoulos K, Barboutis I, et al. Wood species recognition through multidimensional texture analysis. Computers and Electronics in Agriculture, 2018, 144, 241- 248.
doi: 10.1016/j.compag.2017.12.011 |
|
Carmona R J, Wiemann M C, Baas P, et al. Forensic identification of CITES Appendix I. Cupressaceae using anatomy and mass spectrometry. IAWA Journal, 2020, 41 (4): 720- 739.
doi: 10.1163/22941932-bja10002 |
|
Chollet F. 2017. Xception: deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: HI,USA,1800−1807. | |
Eckmann J P, Kamphorst S O, Ruelle D. Recurrence plots of dynamical systems. Europhysics Letters (EPL), 1987, 4 (9): 973- 977.
doi: 10.1209/0295-5075/4/9/004 |
|
Fathurahman T, Gunawan P H, Prakasa E, et al. Wood classification of Japanese Fagaceae using partial sample area and convolutional neural networks. Journal of the Korean Wood Science and Technology, 2021, 49 (5): 491- 503.
doi: 10.5658/WOOD.2021.49.5.491 |
|
Han J C, Zhao P, Wang C K. Wood species recognition through FGLAM textural and spectral feature fusion. Wood Science and Technology, 2021, 55 (2): 535- 552.
doi: 10.1007/s00226-021-01262-0 |
|
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770−778. | |
He T, Lu Y, Jiao L C, et al. Developing deep learning models to Automate rosewood tree species identification for CITES designation and implementation. Holzforschung, 2020, 74 (12): 1123- 1133.
doi: 10.1515/hf-2020-0006 |
|
He T, Mu S B, Zhou H K, et al. Wood species identification based on an ensemble of deep convolution neural networks. Wood Research, 2021, 66 (1): 1- 14. | |
Hinton G, Osindero S, Welling M, et al. Unsupervised discovery of nonlinear structure using contrastive backpropagation. Cognitive Science, 2006, 30 (4): 725- 731.
doi: 10.1207/s15516709cog0000_76 |
|
Hwang S W, Kobayashi K, Zhai S C, et al. Automated identification of Lauraceae by scale-invariant feature transform. Journal of Wood Science, 2018, 64 (2): 69- 77.
doi: 10.1007/s10086-017-1680-x |
|
Hwang S W, Sugiyama J. Computer vision-based wood identification and its expansion and contribution potentials in wood science: a review. Plant Methods, 2021, 17 (1): 47.
doi: 10.1186/s13007-021-00746-1 |
|
Jiao L C, Yu M, Wiedenhoeft A C, et al. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Scientific Reports, 2018, 8 (1): 1945.
doi: 10.1038/s41598-018-20381-6 |
|
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
|
Lens F, Liang C, Guo Y H, et al. Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 2020, 41 (4): 660- 680.
doi: 10.1163/22941932-bja10029 |
|
Liu Z F, Ci X Q, Li L, et al. DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE, 2017, 12 (4): e0175788.
doi: 10.1371/journal.pone.0175788 |
|
Liu Z F, Ma H, Zhang X Y, et al. 2022. Do taxon-specific DNA barcodes improve species discrimination relative to universal barcodes in Lauraceae? Botanical Journal of the Linnean Society, 199(4): 741−753. | |
Pan X, Li K, Chen Z J, et al. Identifying wood based on near-infrared spectra and four gray-level co-occurrence matrix texture features. Forests, 2021, 12 (11): 1527.
doi: 10.3390/f12111527 |
|
Rocha H S, Braga J W B, Kunze D C G C, et al. Identification of mahogany sliced veneer using handheld near-infrared spectroscopy device and multivariate data analysis. IAWA Journal, 2021, 42 (3): 336- 347.
doi: 10.1163/22941932-bja10054 |
|
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR 2015), arXiv: 1409.1556. | |
Sohi A, Avramidis S, Mansfield S. Near-infrared spectroscopic separation of green chain sub-alpine fir lumber from a spruce-pine-fir mix. BioResources, 2017, 12 (2): 3720- 3727. | |
Sun J, Wu J Y, Wang X J, et al. Comparative wood anatomy of 56 species of Lauraceae from Yunnan, China. Brazilian Journal of Botany, 2015, 38 (3): 645- 656.
doi: 10.1007/s40415-015-0172-8 |
|
Szegedy C, Vanhoucke V, Ioffe S, et al. 2016. Rethinking the Inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2818−2826. | |
Wang C K, Zhao P, Li Z Y, et al. Comparison of VIS/NIR spectral curves plus RGB images with hyperspectral images for the identification of Pterocarpus species. Holzforschung, 2022, 76 (7): 579- 591.
doi: 10.1515/hf-2021-0194 |
|
Wang C K, Zhao P. Classification of wood species using spectral and texture features of transverse section. European Journal of Wood and Wood Products, 2021, 79 (5): 1283- 1296.
doi: 10.1007/s00107-021-01728-9 |
|
Yang S Y, Kwon O, Park Y, et al. Application of neural networks for classifying softwood species using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2020, 28 (5/6): 298- 307. |
[1] | Wanying Xie,Wenping Liu,Han Wang. UAV Images of Pine Forests for Early Detection of Pine Wood Nematode Infestation [J]. Scientia Silvae Sinicae, 2024, 60(9): 124-133. |
[2] | Changchun Zhang,Dafang Li,Junguo Zhang. Wildlife Images Recognition Method Based on Wasserstein Distance and Correlation Alignment Transfer Learning [J]. Scientia Silvae Sinicae, 2024, 60(8): 25-32. |
[3] | Jiandong Qi,Shangzi Zheng,Ziyi Chen,Zhongtian Ma. Wildlife Image Recognition of Infrared Cameras in Beijing Area Based on an Improvement ConvNeXt Model [J]. Scientia Silvae Sinicae, 2024, 60(8): 33-45. |
[4] | Meiqi Li,Meiling Liu,Xuan Wang,Xiangnan Liu,Ling Wu,Junji Li. Remote Sensing Recognition Model of Illicium verum Forest Pests and Diseases [J]. Scientia Silvae Sinicae, 2024, 60(11): 128-138. |
[5] | Zhikang Tian,Zhedong Ge,Huanqi Zheng,Zhishuai Zheng,Yucheng Zhou. Microscopic Identification Methods for 75 Types of Hardwood Based on Deep Neural Network [J]. Scientia Silvae Sinicae, 2024, 60(10): 94-103. |
[6] | Jiandong Qi,Zhongtian Ma,Dehuai Zhang,Yun Tian. Wildlife Image Recognition in Miyun District Based on BS-ResNeXt-50 [J]. Scientia Silvae Sinicae, 2023, 59(8): 112-122. |
[7] | Xuexing Fan,Huichun Zhang,Yiping Zou,Yuping Huang,Liming Bian. Inversion of Plant Chlorophyll Content Based on Multispectral Imaging and Machine Learning [J]. Scientia Silvae Sinicae, 2023, 59(7): 78-88. |
[8] | Kunqi Yang,Huichun Zhang,Meng Zhang,Liming Bian. Effects of Water and Fertilizer Stress on Seedling Phenotypic Information Based on Time Series Images [J]. Scientia Silvae Sinicae, 2023, 59(5): 61-70. |
[9] | Lulu Wang,Youfu Zhang,Yibo Chen,Chunyan Chen,Chenhui Song. Leaf Characteristics and Leaf Area Estimation Model of the Spiny Leaf in Juniperus chinensis cv. Pyramidalis [J]. Scientia Silvae Sinicae, 2023, 59(5): 81-87. |
[10] | Jiajie Su,Zheyu Zhang,Jiajun Xu,Bin Li,Jun Lü,Qing Yao. Forest Pest Identification Method Based on a Deep Bilinear Transformation Attention Mechanism Network [J]. Scientia Silvae Sinicae, 2023, 59(2): 121-128. |
[11] | Ying Yuan,Xuefeng Wang. Nondestructive Estimation of Canopy Total Nitrogen of Young Aquilaria sinensis Based on Multispectral Images [J]. Scientia Silvae Sinicae, 2022, 58(9): 36-47. |
[12] | Linlin Hu,Lizhong Wang,Hua Li,Yongquan Ding,Changlei Wei,Huiren Li,Fengjun Zhao. Application of PL High Resolution Remote Sensing Image in Forest Fire Assessment [J]. Scientia Silvae Sinicae, 2022, 58(3): 107-116. |
[13] | Nannan Yang,Yan Bai,Suyi Jiang,Chunmei Yang,Kaihong Xu. Recognition Method of Plate and Wood Based on ALexNet Optimaization [J]. Scientia Silvae Sinicae, 2022, 58(3): 149-158. |
[14] | Linyan Feng,Bingxiang Tan,Qingwang Liu,Chaofan Zhou,Hang Yu,Huiru Zhang,Liyong Fu. Land Cover and Tree Species Classification of the Chongli Winter Olympic Core Area Based on GF-2 Images [J]. Scientia Silvae Sinicae, 2022, 58(10): 10-23. |
[15] | Xuzhan Guo,Qiao Chen,Xiaofang Zhang,Liang Hong,Yuanyuan You,Shouzheng Tang,Liyong Fu. Extraction of Healthy Canopy of New Afforestation for Pinus tabulaeformis Based on UAV High-Resolution Image [J]. Scientia Silvae Sinicae, 2022, 58(10): 111-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||