Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (11): 128-138.doi: 10.11707/j.1001-7488.LYKX20230559
Previous Articles Next Articles
Meiqi Li,Meiling Liu*,Xuan Wang,Xiangnan Liu,Ling Wu,Junji Li
Received:
2023-11-22
Online:
2024-11-25
Published:
2024-11-30
Contact:
Meiling Liu
CLC Number:
Meiqi Li,Meiling Liu,Xuan Wang,Xiangnan Liu,Ling Wu,Junji Li. Remote Sensing Recognition Model of Illicium verum Forest Pests and Diseases[J]. Scientia Silvae Sinicae, 2024, 60(11): 128-138.
Table 1
Classification standard of pest and disease damage degree of Illicium verum forest"
受害程度Damage degree | 分级标准 Classification standard |
健康Healthy | 植株健康,基本无受害情况 The plants are healthy, with negligible signs of damage |
轻度Mild | 植株枝、叶轻度受损,病害率小于15%;虫口密度每株5~13条 The plants show minor branch and leaf damage, with a disease incidence of less than 15%, and an insect density of 5 to 13 per plant |
中度Moderate | 植株枝、叶明显受损,病害率在15%-45%之间;虫口密度每株14~30条 The plants show substantial branch and leaf damage, with a disease incidence between 15% and 45%, and an insect density of 14 to 30 per plant |
重度Severe | 植株枝、叶严重受损,病害率大于45%;虫口密度每株31条以上 The plants show severe branch and leaf damage, with a disease incidence exceeding 45%, and an insect density of over 31 per plant |
Table 2
Summary of calculation of sensitivity index of plant disease and pest response"
光谱指数 Spectra index | 全称 Full name | 表达式 Formula | 参考文献 Reference |
NDVI705 | 红边归一化差异植被指数Normalized difference vegetation index[705,750] | ||
REPI | 红边位置指数Red edge position index | ||
CIred-edge | 红边叶绿素指数Chlorophyll reflectance red-edge index | ||
PSRI | 植被衰减指数Plant senescence reflectance index | ||
PSSRA | 特征色素简单比值指数 Pigment specific simple ratio chlorophyll index | ||
FAPAR | 植被光合有效辐射吸收系数Fraction of absorbed photosynthetically active radiation | 欧空局SNAP开源平台反演European Space Agency SNAP open source platform inversion |
Table 3
Verification of classification accuracy of Illicium verum forest pests and diseases in Leye County from 2019 to 2021"
指标Index | 精度Accuracy | ||
2019 | 2020 | 2021 | |
生产者精度Producer accuracy(%) | 88.92* | 85.47* | 86.17* |
用户精度User accuracy(%) | 88.38* | 92.09* | 85.22* |
总体精度Overall accuracy(%) | 87.59* | 88.51* | 84.17* |
Kappa | 0.81 | 0.84 | 0.80 |
Table 4
Comparison of the accuracy of diseases and insect pests in Illicium verum forest at different stress levels before and after stripping seasonality in Yachang Township Leye County in 2019"
指标Index | 精度Accuracy | |
季节性剥离前Before seasonal stripping | 季节性剥离后After seasonal stripping | |
总体精度Overall accuracy(%) | 72.31 | 84.72 |
Kappa | 0.56 | 0.78 |
丁红波, 王珍珠, 刘 东. 激光雷达信号去噪方法的对比研究. 光学学报, 2021, 41 (24): 9- 18. | |
Ding H B, Wang Z Z, Liu D. Comparison of de-noising methods of LiDAR signal. Acta Optica Sinica, 2021, 41 (24): 9- 18. | |
方中达. 1979. 植病研究方法. 北京: 农业出版社. | |
Fang Z D. 1979. Research methods of plant diseases. Beijing: Agricultural Press. [in Chinese] | |
黄旭影, 许章华, 林 璐, 等. 基于毛竹叶片理化参数的刚竹毒蛾危害检测研究. 光谱学与光谱分析, 2019, 39 (3): 857- 864. | |
Huang X Y, Xu Z H, Lin L, et al. Pantana phyllostachysae Chao damage detection based on physical and chemical parameters of moso bamboo leaves. Spectroscopy and Spectral Analysis, 2019, 39 (3): 857- 864. | |
黄旭影, 许章华, 王小平, 等. 刚竹毒蛾危害下的毛竹叶片光谱特征及虫害等级检测研究. 光谱学与光谱分析, 2021, 41 (4): 1253- 1259. | |
Huang X Y, Xu Z H, Wang X P, et al. Spectral characteristics of moso bamboo leaves damaged by Pantana phyllostachysae Chao and monitoring of pest rating. Spectroscopy and Spectral Analysis, 2021, 41 (4): 1253- 1259. | |
竞 霞, 邹 琴, 白宗璠, 等. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展. 作物学报, 2021, 47 (11): 2067- 2079. | |
Jing X, Zou Q, Bai Z F, et al. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data. Acta Agronomica Sinica, 2021, 47 (11): 2067- 2079. | |
李卫国, 黄文江, 董莹莹, 等. 基于温湿度与遥感植被指数的冬小麦赤霉病估测. 农业工程学报, 2017, 33 (23): 203- 210.
doi: 10.11975/j.issn.1002-6819.2017.23.026 |
|
Li W G, Huang W J, Dong Y Y, et al. Estimation on winter wheat scab based on combination of temperature, humidity and remote sensing vegetation index. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (23): 203- 210.
doi: 10.11975/j.issn.1002-6819.2017.23.026 |
|
梁 栋, 杨勤英, 黄文江, 等. 2015. 基于小波变换与支持向量机回归的冬小麦叶面积指数估算. 红外与激光工程, 44(1): 335-340. | |
Liang D, Yang Q Y, Huang W J, et al. 2015. Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat. Infrared and Laser Engineering, 44(1): 335. [in Chinese] | |
马 爽, 韩 阳, 黄梦雪, 等. 基于不同植被指数的植被-土壤混合像元高光谱偏振信息与模型研究. 光谱学与光谱分析, 2017, 37 (11): 3549- 3556. | |
Ma S, Han Y, Huang M X, et al. Study on information and model of high polarization hyperspectral about vegetation-soil mixed pixels based on different vegetation indices. Spectroscopy and Spectral Analysis, 2017, 37 (11): 3549- 3556. | |
宁鸿章, 谭 鑫, 李宇航, 等. 空-谱维联合Savitzky-Golay高光谱滤波算法及其应用. 光谱学与光谱分析, 2020, 40 (12): 3699- 3704. | |
Ning H Z, Tan X, Li Y H, et al. Joint space-spectrum SG filtering algorithms for hyperspectral images and its application. Spectroscopy and Spectral Analysis, 2020, 40 (12): 3699- 3704. | |
彭隆赞, 金时超, 孟凡凡, 等. 马尾松毛虫危害程度的高光谱监测方法. 湖北林业科技, 2017, 46 (3): 1- 6.
doi: 10.3969/j.issn.1004-3020.2017.03.002 |
|
Peng L Z, Jin S C, Meng F F, et al. Monitoring Dendrolimus punctatus harmed on Pinus massoniana with hyperspectral data. Hubei Forestry Science and Technology, 2017, 46 (3): 1- 6.
doi: 10.3969/j.issn.1004-3020.2017.03.002 |
|
田开慧, 陈怡帆, 周宏威. 湖南湘西州马尾松毛虫和松材线虫病发生非线性建模与预测. 森林工程, 2022, 38 (6): 38- 44. | |
Tian K H, Chen Y F, Zhou H W. Prediction of occurrence trend of Dendrolimus punctatus and pine wilt disease in Xiangxi Prefecture. Forest Engineering, 2022, 38 (6): 38- 44. | |
吴项乾, 曹 林, 申 鑫, 等. 基于无人机激光雷达的银杏人工林有效叶面积指数估测. 林业科学, 2020, 56 (1): 74- 86.
doi: 10.11707/j.1001-7488.20200108 |
|
Wu X Q, Cao L, Shen X, et al. Estimation of effective leaf area index using UAV-based LiDAR in Ginkgo plantations. Scientia Silvae Sinicae, 2020, 56 (1): 74- 86.
doi: 10.11707/j.1001-7488.20200108 |
|
许章华, 黄旭影, 林 璐, 等. 基于Fisher判别分析与随机森林的马尾松毛虫害检测. 光谱学与光谱分析, 2018, 38 (9): 2888- 2896. | |
Xu Z H, Huang X Y, Lin L, et al. Dendrolimus punctatus walker damage detection based on fisher discriminant analysis and random forest. Spectroscopy and Spectral Analysis, 2018, 38 (9): 2888- 2896. | |
杨国胜. 八角树常见病虫害防治措施探讨. 南方农业, 2022, 16 (10): 40- 42, 46. | |
Yang G S. Discussion on control measures of common pests and diseases of Illicium verum. South China Agriculture, 2022, 16 (10): 40- 42, 46. | |
赵晋陵, 金 玉, 叶回春, 等. 基于无人机多光谱影像的槟榔黄化病遥感监测. 农业工程学报, 2020, 36 (8): 54- 61.
doi: 10.11975/j.issn.1002-6819.2020.08.007 |
|
Zhao J L, Jin Y, Ye H C, et al. Remote sensing monitoring of Areca yellow leaf disease based on UAV multi-spectral images. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (8): 54- 61.
doi: 10.11975/j.issn.1002-6819.2020.08.007 |
|
张 凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望. 遥感学报, 2021, 25 (1): 403- 422.
doi: 10.11834/jrs.20210196 |
|
Zhang N, Yang G J, Zhao C J, et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests. National Remote Sensing Bulletin, 2021, 25 (1): 403- 422.
doi: 10.11834/jrs.20210196 |
|
朱建军, 周靖鸿, 周 璀, 等. 一种新的去除遥感影像混合噪声组合滤波方法. 武汉大学学报(信息科学版), 2017, 42 (3): 348- 354. | |
Zhu J J, Zhou J H, Zhou C, et al. A new combination filtering method to remove mixed noise of remote sensing images. Geomatics and Information Science of Wuhan University, 2017, 42 (3): 348- 354. | |
朱 帅, 王金聪, 任洪娥, 等. 基于多特征融合的残差网络果树叶片病害识别. 森林工程, 2022, 38 (1): 108- 114, 123. | |
Zhu S, Wang J C, Ren H E, et al. Fruit tree leaf disease recognition based on residual network and multi feature fusion. Forest Engineering, 2022, 38 (1): 108- 114, 123. | |
Abdullah H, Darvishzadeh R, Skidmore A K, et al. European spruce bark beetle (Ips typographus L. ) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 2018, 64, 199- 209.
doi: 10.1016/j.jag.2017.09.009 |
|
Alakus C, Larocque D, Labbe A. Covariance regression with random forests. BMC Bioinformatics, 2023, 24 (1): 258.
doi: 10.1186/s12859-023-05377-y |
|
Bárta V, Lukeš P, Homolová L. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 2021, 100, 102335.
doi: 10.1016/j.jag.2021.102335 |
|
Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing, 1998, 19 (4): 657- 675.
doi: 10.1080/014311698215919 |
|
Choi W I, Park Y S. Monitoring, assessment and management of forest insect pests and diseases. Forests, 2019, 10 (10): 865.
doi: 10.3390/f10100865 |
|
Cleveland R B, Cleveland W S. STL: a seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 1990, 6 (1): 3- 73. | |
Duarte A, Borralho N, Cabral P, et al. Recent advances in forest insect pests and diseases monitoring using UAV-based data: a systematic review. Forests, 2022, 13 (6): 911.
doi: 10.3390/f13060911 |
|
Frampton W J, Dash J, Watmough G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82, 83- 92.
doi: 10.1016/j.isprsjprs.2013.04.007 |
|
Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 1999, 143 (1): 105- 117.
doi: 10.1046/j.1469-8137.1999.00424.x |
|
Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 2003, 160 (3): 271- 282.
doi: 10.1078/0176-1617-00887 |
|
Gitelson A, Arkebauer T, Viña A, et al. Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region. Remote Sensing of Environment, 2021, 258, 112401.
doi: 10.1016/j.rse.2021.112401 |
|
Jiang X P, Zhen J N, Miao J, et al. Assessing mangrove leaf traits under different pest and disease severity with hyperspectral imaging spectroscopy. Ecological Indicators, 2021, 129, 107901.
doi: 10.1016/j.ecolind.2021.107901 |
|
Lai J L, Bai C H, Pan J M, et al. 2023. Colletotrichum horii and Colletotrichum fioriniae causing anthracnose on star anise (Illicium verum) in China. Plant Disease, https://doi.org/10.1094/PDIS-04-23-0640-PDN. | |
Long L, Chen Y Y, Song S J, et al. Remote sensing monitoring of pine wilt disease based on time-series remote sensing index. Remote Sensing, 2023, 15 (2): 360.
doi: 10.3390/rs15020360 |
|
Luo F Y, Huang M, Liu H, et al. Root rot Caused by Setophoma terrestris on Illicium verum in Yunnan Province, China. Plant Disease, 2023, 107 (8): 2518. | |
Ma H Q, Jing Y S, Huang W J, et al. Integrating early growth information to monitor winter wheat powdery mildew using multi-temporal landsat-8 imagery. Sensors, 2018, 18 (10): 3290.
doi: 10.3390/s18103290 |
|
Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 1999, 106 (1): 135- 141.
doi: 10.1034/j.1399-3054.1999.106119.x |
|
Naboureh A, Ebrahimy H, Azadbakht M, et al. RUESVMs: an ensemble method to handle the class imbalance problem in land cover mapping using google earth engine. Remote Sensing, 2020, 12 (21): 3484.
doi: 10.3390/rs12213484 |
|
Qin B X, Sun F G, Shen W X, et al. Deep learning-based pine nematode trees’ identification using multispectral and visible UAV imagery. Drones, 2023, 7 (3): 183.
doi: 10.3390/drones7030183 |
|
Sellers P J, Dickinson R E, Randall D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 1997, 275 (5299): 502- 509.
doi: 10.1126/science.275.5299.502 |
|
Shi Y, Huang W J, González-Moreno P, et al. Wavelet-based rust spectral feature set (WRSFs): a novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat. Remote Sensing, 2018, 10 (4): 525.
doi: 10.3390/rs10040525 |
|
Wang S Y, Liu M L, Li Y M, et al. Spatiotemporal cube model based on stress features for identification of heavy metal stress in rice. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 4401313. | |
Wu M W, Luo Y L, Chen F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal south China. Journal of Applied Meteorology and Climatology, 2019, 58 (8): 1799- 1819.
doi: 10.1175/JAMC-D-18-0284.1 |
|
Zhang B Y, Ye H C, Lu W, et al. A spatiotemporal change detection method for monitoring pine wilt disease in a complex landscape using high-resolution remote sensing imagery. Remote Sensing, 2021, 13 (11): 2083.
doi: 10.3390/rs13112083 |
|
Zhang J C, Huang Y B, Pu R L, et al. Monitoring plant diseases and pests through remote sensing technology: a review. Computers and Electronics in Agriculture, 2019, 165, 104943.
doi: 10.1016/j.compag.2019.104943 |
|
Zhang J C, Wang N, Yuan L, et al. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements. Biosystems Engineering, 2017, 162, 20- 29.
doi: 10.1016/j.biosystemseng.2017.07.003 |
|
Zimmermann S, Hoffmann K. Evaluating the capabilities of Sentinel-2 data for large-area detection of bark beetle infestation in the Central German Uplands. Journal of Applied Remote Sensing, 2020, 14 (2): 024515. |
[1] | Yonglei Shi,Zhihui Wang,Shiming Li,Chunyi Li,Peiqing Xiao,Pan Zhang,Xiaoge Chang. A Method of Estimation Aboveground Biomass of Sparse Tree-Shrub Using Optical Remote Sensing [J]. Scientia Silvae Sinicae, 2022, 58(2): 13-22. |
[2] | Xuzhan Guo,Qiao Chen,Xiaofang Zhang,Liang Hong,Yuanyuan You,Shouzheng Tang,Liyong Fu. Extraction of Healthy Canopy of New Afforestation for Pinus tabulaeformis Based on UAV High-Resolution Image [J]. Scientia Silvae Sinicae, 2022, 58(10): 111-120. |
[3] | Li Wenmin, Wei Hong, Li Changxiao, Chen Cungen. Optimization of a Model for Estimating Pterocarya stenoptera Chlorophyll Concentration with Hyperspectral Parameters [J]. Scientia Silvae Sinicae, 2014, 50(4): 55-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||